Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(44): 51894-51905, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34086436

ABSTRACT

The aspect ratio (AR) of filler particles is one of the most critical determinants for the mechanical properties of particle-reinforced polymer composites. However, it has been challenging to solely study the effect of particle AR due to the difficulties of controlling AR without altering the physical and chemical properties of the particle. Herein, we synthesized PCN-222, a zirconium-based porphyrinic metal-organic framework (MOF) with preferential longitudinal growth as a series of particles with ARs increasing from 3.4 to 54. The synthetic MOF conditions allowed for the chemical properties of the particles to remain constant over the series. The particles were employed as reinforcers for poly(methyl methacrylate) (PMMA). MOF-polymer composite films were fabricated using doctor-blading techniques, which facilitated particle dispersion and alignment in the PMMA matrix, as revealed by optical microscopy and wide-angle X-ray diffraction. Mechanical measurements showed that both elastic and dynamic moduli increased with particle AR and particle concentrations but started to decrease as particle loading increased beyond 0.5 wt % (1.12 vol %). The data obtained at low particle loadings were fitted well with the Halpin-Tsai model. In contrast, the percolation model and the Cox model were unable to adequately fit the data, indicating the mechanical reinforcement in our system mainly originated from efficient load transfer between particles and the matrix in the particle orienting direction. Finally, we showed that the thermal stability of composite films increased with the addition of MOF particles because of the high thermal degradation temperature and restricted polymer chain mobility.

2.
RSC Adv ; 11(28): 17064-17071, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479687

ABSTRACT

Solvent plays a key role in biological functions, catalysis, and drug delivery. Metal-organic frameworks (MOFs) due to their tunable functionalities, porosities and surface areas have been recently used as drug delivery vehicles. To investigate the effect of solvent on drug adsorption in MOFs, we have performed integrated computational and experimental studies in selected biocompatible MOFs, specifically, UiO-AZB, HKUST-1 (or CuBTC) and NH2-MIL-53(Al). The adsorption of three drugs, namely, 5-fluorouracil (5-FU), ibuprofen (IBU), and hydroxyurea (HU) were performed in the presence and absence of the ethanol. Our computational predictions, at 1 atmospheric pressure, showed a reasonable agreement with experimental studies performed in the presence of ethanol. We find that in the presence of ethanol the drug molecules were adsorbed at the interface of solvent and MOFs. Moreover, the computationally calculated adsorption isotherms suggested that the drug adsorption was driven by electrostatic interactions at lower pressures (<10-4 Pa). Our computational predictions in the absence of ethanol were higher compared to those in the presence of ethanol. The MOF-adsorbate interaction (U HA) energy decreased with decrease in the size of a drug molecule in all three MOFs at all simulated pressures. At high pressure the interaction energy increases with increase in the MOFs pore size as the number of molecules adsorbed increases. Thus, our research shows the important role played by solvent in drug adsorption and suggests that it is critical to consider solvent while performing computational studies.

3.
J Am Chem Soc ; 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33215496

ABSTRACT

Metal-organic frameworks (MOFs) are emerging as a promising platform for solar energy conversion applications. Their potential utilization as efficient chromophores in artificial photosynthesis is closely related to the understanding of light-harvesting and energy transfer processes that occur within these molecular scaffolds. Herein, we present the photophysical investigation of Ru(II), Ir(III), and Os(II) polypyridyl complexes incorporated into the backbone of UiO-67. In this work, we systematically study the effect of spin-orbit coupling on dipole-dipole energy transfer in MOFs using steady-state and time-resolved spectroscopic techniques. The results of our work indicate successful triplet-to-singlet energy transfer and a sizable increase in the transfer kinetics and critical distance, as direct consequences of strong spin-orbit couplings. Remarkably, the reported R0 value for OsDCBPY (R0 = 88 ± 10 Å) represents one of the largest Förster distances observed in an MOF. Collectively, this work contributes to the general knowledge of energy transfer in materials and provides groundwork for efficient utilization in artificial photosynthetic assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...