Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Insur Med ; 47(4): 220-229, 2018.
Article in English | MEDLINE | ID: mdl-30702368

ABSTRACT

OBJECTIVES: -Determine whether an epigenetic assay for smoking predicts all-cause mortality in adults participating in a longitudinal study of Iowa adoptees. BACKGROUND: -Improved biomarkers for smoking are needed given its large public health impact and significant limitations of both self-report and current biomarkers, such as cotinine in detecting smoking. In the past 5 years, multiple epigenome-wide association studies of smoking have identified loci suitable for translation as epigenetic biomarkers for smoking, in particular the CpG cg05575921. Digital polymerase chain reaction methods hold promise for the development of this and other epigenetic biomarkers. METHODS: -Participants in the Iowa Adoption Studies were interviewed regarding their smoking habits. DNA was prepared from whole blood and bisulfite-converted for methylation analysis and digital droplet polymerase chain reaction assay of methylation at cg05575921 was performed. National Death Index records were requested for 584 study participants, resulting in 24 complete matches, 210 partial matches and 350 non-matching records. Complete matches were coded as deceased while the remainder were coded as alive (ie, censored). In total, methylation data and vital status information were available for a total of N = 193 subjects, including 15 deceased and 178 non-deceased. Cox regression was used to examine the ability of cg05575921 methylation as a continuous value to predict the timing of mortality with and without the inclusion of age, sex, race, BMI, marital status, educational status, socioeconomic status, cardiovascular risk factors, and a history of cancer as covariates. RESULTS: -Methylation at cg05575921 predicted the hazard of mortality as the sole predictor and after accounting for major demographic and clinical risk factors. The fitted model showed the hazard ratio increased by 3.5% for every 1% decrease in methylation. CONCLUSIONS: -Decreased methylation at cg05575921, an emerging epigenetic biomarker for smoking, was associated with early mortality in a longitudinal study of adults after accounting for the impact of major demographic and clinical risk factors for all-cause mortality. This approach may be useful in clinical research or actuarial assessments.


Subject(s)
Biomarkers , DNA Methylation , Epigenomics , Tobacco Smoking , Adult , Aged , Epigenesis, Genetic , Female , Humans , Longitudinal Studies , Male , Middle Aged , Polymerase Chain Reaction , Predictive Value of Tests , Risk Factors , Tobacco Smoking/mortality
2.
Am J Med Genet B Neuropsychiatr Genet ; 174(6): 641-650, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28816414

ABSTRACT

Better biomarkers to detect smoking are needed given the tremendous public health burden caused by smoking. Current biomarkers to detect smoking have significant limitations, notably a short half-life for detection and lack of sensitivity for light smokers. These limitations may be particularly problematic in populations with less accurate self-reporting. Prior epigenome-wide association studies indicate that methylation status at cg05575921, a CpG residue located in the aryl hydrocarbon receptor repressor (AHRR) gene, may be a robust indicator of smoking status in individuals with as little as half of a pack-year of smoking. In this study, we show that a novel droplet digital PCR assay for measuring methylation at cg05575921 can reliably detect smoking status, as confirmed by serum cotinine, in populations with different demographic characteristics, smoking histories, and rates of false-negative self-report of smoking behavior. Using logistic regression models, we show that obtaining maximum accuracy in predicting smoking status depends on appropriately weighting self-report and cg05575921 methylation according to the characteristics of the sample being tested. Furthermore, models using only cg05575921 methylation to predict smoking perform nearly as well as those also including self-report across populations. In conclusion, cg05575921 has significant potential as a clinical biomarker to detect smoking in populations with varying rates of accuracy in self-report of smoking behavior.


Subject(s)
Biomarkers/analysis , Epigenomics , Self Report/statistics & numerical data , Smoking/blood , Truth Disclosure , Adult , Case-Control Studies , DNA Methylation , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...