Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 191: 105088, 2021 07.
Article in English | MEDLINE | ID: mdl-34019950

ABSTRACT

3-deazaneplanocin A (DzNep) and its 3-brominated analogs inhibit replication of several RNA viruses. This antiviral activity is attributed to inhibition of S-adenosyl homocysteine hydrolase (SAHase) and consequently inhibition of viral methyltransferases, impairing translation of viral transcripts. The L-enantiomers of some derivatives retain antiviral activity despite dramatically reduced inhibition of SAHase in vitro. To better understand the mechanisms by which these compounds exert their antiviral effects, we compared DzNep, its 3-bromo-derivative, CL123, and the related enantiomers, CL4033 and CL4053, for their activities towards the model negative-sense RNA virus vesicular stomatitis virus (VSV). In cell culture, DzNep, CL123 and CL4033 each exhibited 50 percent inhibitory concentrations (IC50s) in the nanomolar range whereas the IC50 for the L-form, CL4053, was 34-85 times higher. When a CL123-resistant mutant (VSVR) was selected, it exhibited cross-resistance to each of the neplanocin analogs, but retained sensitivity to the adenosine analog BCX4430, an RNA chain terminator. Sequencing of VSVR identified a mutation in the C-terminal domain (CTD) of the viral large (L) protein, a domain implicated in regulation of L protein methyltransferase activity. CL123 inhibited VSV viral mRNA 5' cap methylation, impaired viral protein synthesis and decreased association of viral mRNAs with polysomes. Modest impacts on viral transcription were also demonstrated. VSVR exhibited partial resistance in each of these assays but its replication was impaired, relative to the parent VSV, in the absence of the inhibitors. These data suggest that DzNep, CL123 and CL4033 inhibit VSV through impairment of viral mRNA cap methylation and that the L-form, CL4053, based on the cross-resistance of VSVR, may act by a similar mechanism.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Vesicular stomatitis Indiana virus/drug effects , Virus Replication/drug effects , Adenosine/chemistry , Adenosine/pharmacology , Animals , Chlorocebus aethiops , Inhibitory Concentration 50 , Methylation/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Transcription, Genetic/drug effects , Vero Cells , Vesicular stomatitis Indiana virus/genetics
2.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295912

ABSTRACT

Menglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-ß) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-ß promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-ß promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.


Subject(s)
Filoviridae Infections/physiopathology , Filoviridae/genetics , Animals , Chiroptera/immunology , Chiroptera/virology , Ebolavirus , Filoviridae/metabolism , Filoviridae/pathogenicity , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon-beta/immunology , Kelch-Like ECH-Associated Protein 1/metabolism , Marburgvirus , NF-E2-Related Factor 2/metabolism , STAT1 Transcription Factor , Viral Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...