Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Elife ; 122024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356736

ABSTRACT

Decoding the activity of individual neural cells during natural behaviours allows neuroscientists to study how the nervous system generates and controls movements. Contrary to other neural cells, the activity of spinal motor neurons can be determined non-invasively (or minimally invasively) from the decomposition of electromyographic (EMG) signals into motor unit firing activities. For some interfacing and neuro-feedback investigations, EMG decomposition needs to be performed in real time. Here, we introduce an open-source software that performs real-time decoding of motor neurons using a blind-source separation approach for multichannel EMG signal processing. Separation vectors (motor unit filters) are optimised for each motor unit from baseline contractions and then re-applied in real time during test contractions. In this way, the firing activity of multiple motor neurons can be provided through different forms of visual feedback. We provide a complete framework with guidelines and examples of recordings to guide researchers who aim to study movement control at the motor neuron level. We first validated the software with synthetic EMG signals generated during a range of isometric contraction patterns. We then tested the software on data collected using either surface or intramuscular electrode arrays from five lower limb muscles (gastrocnemius lateralis and medialis, vastus lateralis and medialis, and tibialis anterior). We assessed how the muscle or variation of contraction intensity between the baseline contraction and the test contraction impacted the accuracy of the real-time decomposition. This open-source software provides a set of tools for neuroscientists to design experimental paradigms where participants can receive real-time feedback on the output of the spinal cord circuits.


Subject(s)
Electromyography , Motor Neurons , Software , Electromyography/methods , Humans , Motor Neurons/physiology , Muscle, Skeletal/physiology , Signal Processing, Computer-Assisted , Adult , Male , Female , Young Adult
2.
J Electromyogr Kinesiol ; 77: 102886, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761514

ABSTRACT

We introduce the open-source software MUedit and we describe its use for identifying the discharge timing of motor units from all types of electromyographic (EMG) signals recorded with multi-channel systems. MUedit performs EMG decomposition using a blind-source separation approach. Following this, users can display the estimated motor unit pulse trains and inspect the accuracy of the automatic detection of discharge times. When necessary, users can correct the automatic detection of discharge times and recalculate the motor unit pulse train with an updated separation vector. Here, we provide an open-source software and a tutorial that guides the user through (i) the parameters and steps of the decomposition algorithm, and (ii) the manual editing of motor unit pulse trains. Further, we provide simulated and experimental EMG signals recorded with grids of surface electrodes and intramuscular electrode arrays to benchmark the performance of MUedit. Finally, we discuss advantages and limitations of the blind-source separation approach for the study of motor unit behaviour during tonic muscle contractions.


Subject(s)
Algorithms , Electromyography , Motor Neurons , Muscle Contraction , Muscle, Skeletal , Software , Electromyography/methods , Humans , Muscle, Skeletal/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Signal Processing, Computer-Assisted , Action Potentials/physiology
3.
Article in English | MEDLINE | ID: mdl-36792455

ABSTRACT

Personalized treatments are gaining momentum across all fields of medicine. Precision medicine can be applied to neuromodulatory techniques, in which focused brain stimulation treatments such as repetitive transcranial magnetic stimulation (rTMS) modulate brain circuits and alleviate clinical symptoms. rTMS is well tolerated and clinically effective for treatment-resistant depression and other neuropsychiatric disorders. Despite its wide stimulation parameter space (location, angle, pattern, frequency, and intensity can be adjusted), rTMS is currently applied in a one-size-fits-all manner, potentially contributing to its suboptimal clinical response (∼50%). In this review, we examine components of rTMS that can be optimized to account for interindividual variability in neural function and anatomy. We discuss current treatment options for treatment-resistant depression, the neural mechanisms thought to underlie treatment, targeting strategies, stimulation parameter selection, and adaptive closed-loop treatment. We conclude that a better understanding of the wide and modifiable parameter space of rTMS will greatly improve the clinical outcome.


Subject(s)
Depressive Disorder, Treatment-Resistant , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Depression , Depressive Disorder, Treatment-Resistant/therapy
SELECTION OF CITATIONS
SEARCH DETAIL