Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 70(4): 1524-33, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20145145

ABSTRACT

The receptor tyrosine kinase c-Met is an attractive target for therapeutic blockade in cancer. Here, we describe MK-2461, a novel ATP-competitive multitargeted inhibitor of activated c-Met. MK-2461 inhibited in vitro phosphorylation of a peptide substrate recognized by wild-type or oncogenic c-Met kinases (N1100Y, Y1230C, Y1230H, Y1235D, and M1250T) with IC(50) values of 0.4 to 2.5 nmol/L. In contrast, MK-2461 was several hundredfold less potent as an inhibitor of c-Met autophosphorylation at the kinase activation loop. In tumor cells, MK-2461 effectively suppressed constitutive or ligand-induced phosphorylation of the juxtamembrane domain and COOH-terminal docking site of c-Met, and its downstream signaling to the phosphoinositide 3-kinase-AKT and Ras-extracellular signal-regulated kinase pathways, without inhibiting autophosphorylation of the c-Met activation loop. BIAcore studies indicated 6-fold tighter binding to c-Met when it was phosphorylated, suggesting that MK-2461 binds preferentially to activated c-Met. MK-2461 displayed significant inhibitory activities against fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor, and other receptor tyrosine kinases. In cell culture, MK-2461 inhibited hepatocyte growth factor/c-Met-dependent mitogenesis, migration, cell scatter, and tubulogenesis. Seven of 10 MK-2461-sensitive tumor cell lines identified from a large panel harbored genomic amplification of MET or FGFR2. In a murine xenograft model of c-Met-dependent gastric cancer, a well-tolerated oral regimen of MK-2461 administered at 100 mg/kg twice daily effectively suppressed c-Met signaling and tumor growth. Similarly, MK-2461 inhibited the growth of tumors formed by s.c. injection of mouse NIH-3T3 cells expressing oncogenic c-Met mutants. Taken together, our findings support further preclinical development of MK-2461 for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Delivery Systems , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Cells, Cultured , Dogs , Drug Delivery Systems/methods , Enzyme Activation/drug effects , Female , Haplorhini , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Substrate Specificity/drug effects , Xenograft Model Antitumor Assays
2.
Am J Med Genet A ; 152A(1): 4-24, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20014119

ABSTRACT

The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium "Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back" chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies were successfully meet with a commitment to begin to move towards clinical trials.


Subject(s)
MAP Kinase Signaling System , ras Proteins/metabolism , Humans , Syndrome
3.
Cancer Res ; 67(5): 2081-8, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17332337

ABSTRACT

Recent clinical successes of small-molecule epidermal growth factor receptor (EGFR) inhibitors in treating advanced non-small cell lung cancer (NSCLC) have raised hopes that the identification of other deregulated growth factor pathways in NSCLC will lead to new therapeutic options for NSCLC. Met, the receptor for hepatocyte growth factor, has been implicated in growth, invasion, and metastasis of many tumors including NSCLC. To assess the functional role for Met in NSCLC, we evaluated a panel of nine lung cancer cell lines for Met gene amplification, Met expression, Met pathway activation, and the sensitivity of the cell lines to short hairpin RNA (shRNA)-mediated Met knockdown. Two cell lines, EBC-1 and H1993, showed significant Met gene amplification and overexpressed Met receptors which were constitutively phosphorylated. The other seven lines did not exhibit Met amplification and expressed much lower levels of Met, which was phosphorylated only on addition of hepatocyte growth factor. We also found a strong up-regulation of tyrosine phosphorylation in beta-catenin and p120/delta-catenin in the Met-amplified EBC-1 and H1993 cell lines. ShRNA-mediated Met knockdown induced significant growth inhibition, G(1)-S arrest, and apoptosis in EBC-1 and H1993 cells, whereas it had little or no effect on the cell lines that do not have Met amplification. These results strongly suggest that Met amplification identifies a subset of NSCLC likely to respond to new molecular therapies targeting Met.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Gene Amplification , Lung Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Receptors, Growth Factor/genetics , Receptors, Growth Factor/physiology , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Humans , Lung Neoplasms/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-met , RNA, Small Interfering/pharmacology , Receptors, Growth Factor/antagonists & inhibitors
4.
Bioorg Med Chem Lett ; 16(5): 1146-50, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16368234
5.
J Med Chem ; 47(25): 6363-72, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566305

ABSTRACT

A series of N-(1,3-thiazol-2-yl)pyridin-2-amine KDR kinase inhibitors have been developed that possess optimal properties. Compounds have been discovered that exhibit excellent in vivo potency. The particular challenges of overcoming hERG binding activity and QTc increases in vivo in addition to achieving good pharmacokinetics have been acomplished by discovering a unique class of amine substituents. These compounds have a favorable kinase selectivity profile that can be accentuated with appropriate substitution.


Subject(s)
Aminopyridines/chemical synthesis , Potassium Channels, Voltage-Gated/metabolism , Pyridines/chemical synthesis , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Thiazoles/chemical synthesis , Administration, Oral , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Biological Availability , Cell Line , Dogs , ERG1 Potassium Channel , Electrocardiography/drug effects , Ether-A-Go-Go Potassium Channels , In Vitro Techniques , Lung/enzymology , Macaca mulatta , Male , Mice , Microsomes, Liver/metabolism , Phosphorylation , Pyridines/pharmacokinetics , Pyridines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Thiazoles/pharmacokinetics , Thiazoles/pharmacology , Tissue Distribution , Vascular Endothelial Growth Factor Receptor-2/metabolism
6.
Bioorg Med Chem Lett ; 12(15): 2027-30, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12113834

ABSTRACT

We have prepared a series of potent, dual inhibitors of the prenyl transferases farnesyl protein transferase (FPTase) and geranyl-geranyl protein transferase I (GGPTase). The compounds were shown to possess potent activity against both enzymes in cell culture. Mechanistic analysis has shown that the compounds are CAAX competitive for FPTase inhibition but geranyl-geranyl pyrophosphate (GGPP) competitive for GGPTase inhibiton.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Binding Sites , Binding, Competitive , Inhibitory Concentration 50 , Protein Binding , Structure-Activity Relationship , Tumor Cells, Cultured , rap GTP-Binding Proteins/drug effects , rap GTP-Binding Proteins/metabolism
7.
J Med Chem ; 45(12): 2388-409, 2002 Jun 06.
Article in English | MEDLINE | ID: mdl-12036349

ABSTRACT

A series of macrocyclic 3-aminopyrrolidinone farnesyltransferase inhibitors (FTIs) has been synthesized. Compared with previously described linear 3-aminopyrrolidinone FTIs such as compound 1, macrocycles such as 49 combined improved pharmacokinetic properties with a reduced potential for side effects. In dogs, oral bioavailability was good to excellent, and increases in plasma half-life were due to attenuated clearance. It was observed that in vivo clearance correlated with the flexibility of the molecules and this concept proved useful in the design of FTIs that exhibited low clearance, such as FTI 78. X-ray crystal structures of compounds 49 and 66 complexed with farnesyltransferase (FTase)-farnesyl diphosphate (FPP) were determined, and they provide details of the key interactions in such ternary complexes. Optimization of this 3-aminopyrrolidinone series of compounds led to significant increases in potency, providing 83 and 85, the most potent inhibitors of FTase in cells described to date.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases , Cation Transport Proteins , DNA-Binding Proteins , Enzyme Inhibitors/chemical synthesis , Naphthalenes/chemical synthesis , Potassium Channels, Voltage-Gated , Pyrrolidines/chemical synthesis , Trans-Activators , Animals , Cell Line , Chromatography, Liquid , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors , Dogs , ERG1 Potassium Channel , Electrocardiography , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Ether-A-Go-Go Potassium Channels , Farnesyltranstransferase , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Molecular , Molecular Structure , Naphthalenes/chemistry , Naphthalenes/pharmacokinetics , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Potassium Channels/metabolism , Protein Binding , Pyrrolidines/chemistry , Pyrrolidines/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship , Transcriptional Regulator ERG
8.
J Org Chem ; 61(22): 7727-7737, 1996 Nov 01.
Article in English | MEDLINE | ID: mdl-11667727

ABSTRACT

Farnesyl-protein transferase (FPTase) is an enzyme responsible for the farnesylation of Ras protein. Farnesylation is required for cell-transforming activity in several tumor-types, and therefore, inhibition of FPTase activity may be a potential target for anticancer drugs. Our continued search for novel inhibitors led to the isolation of a number of bicyclic resorcinaldehyde cyclohexanone derivatives named here cylindrols A(1) to A(4), cylindrols B and B(1), and a number of known compounds, from Cylindrocarpon lucidum. The compounds were isolated by bioassay-guided separation using Sephadex LH-20, silica gel, and reverse phase HPLC. Structures were elucidated by extensive application of 2D NMR and X-ray crystallography. The determination of absolute stereochemistry was accomplished by CD measurements. Chemical transformations of the most abundant compound resulted in a number of key derivatives which were critical for the evaluation of structure activity relationship. These compounds are members of ascochlorin family and showed a wide range of inhibitory activity (0.7 &mgr;M to >140 &mgr;M) against FPTase. The FPTase activity was noncompetitive with respect to both substrates. Isolation, structures, chemical transformations, and FPTase activity are discussed in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...