Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37240776

ABSTRACT

We investigated the effect of anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex (rDLPFC) on the sensitive decision making of female team sports referees. Twenty-four female referees voluntarily participated in this randomized, double-blind, crossover, and sham-controlled study. In three different sessions, participants received either anodal (a-tDCS; anode (+) over F4, cathode (-) over the supraorbital region (SO)), cathodal (c-tDCS; -F4/+SO), or sham tDCS (sh-tDCS) in a randomized and counterbalanced order. a-tDCS and c-tDCS were applied with 2 mA for 20 min. In sh-tDCS, the current was turned off after 30 s. Before and after tDCS, participants performed the computerized Iowa Gambling Task (IGT) and Go/No Go impulsivity (IMP) tests. Only a-tDCS improved IGT and IMP scores from pre to post. The delta (Δ = post-pre) analysis showed a significantly higher ΔIGT in a-tDCS compared to c-tDCS (p = 0.02). The ΔIMP was also significantly higher in a-tDCS compared to sh-tDCS (p = 0.01). Finally, the reaction time decreased significantly more in a-tDCS (p = 0.02) and sh-tDCS (p = 0.03) than in c-tDCS. The results suggest that the a-tDCS improved factors related to sensitive decision making in female team sports referees. a-tDCS might be used as an ergogenic aid to enhance decision performance in female team sports referees.

2.
Exp Brain Res ; 240(6): 1887-1897, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460346

ABSTRACT

The objective was to measure the corticospinal excitability and motoneuron responsiveness of the right and left Biceps Brachii (BB), and left Abductor Digiti Minimi (ADM) muscles in response to submaximal isotonic fatiguing contractions performed by the right BB muscle. With the familiarization session, ten young moderately active male subjects came to the lab on seven occasions. Three sets of 3 min seated elbow curls at 25% of one-repetition maximum (1RM) separated by a 1-min rest performed by the right BB muscle were used as the fatiguing protocol. The motor evoked potential (MEP), cervicomedullary motor evoked potential (CMEP), and compound muscle action potential (Mmax) of the right BB muscle (baseline and after each set of the fatiguing task), the left BB and ADM muscles (baseline, post-fatigue, post-10, and post-20 min) were measured. MEP and CMEP were then normalized to Mmax for statistical analysis. The results showed that in the right BB muscle, there was a significant reduction in the MEP after performing the fatiguing task (p= 0.03), while no significant effect of time was seen in the CMEP (p= 0.07). In the left BB muscle, the MEP significantly decreased from pre-fatigue to post-fatigue (p= 0.01) and post-10 (p= 0.001), while there was a significant decline in the CMEP post-fatigue (p= 0.03). In the left ADM muscle, MEP significantly decreased post-fatigue (p= 0.03) and no changes were seen in the CMEP (p= 0.12). These results not only confirm the incidence of non-local muscle fatigue (NLMF) in response to performing submaximal isotonic fatiguing contractions but also as a new finding, imply that both spinal and supraspinal modulations account for the NLMF response.


Subject(s)
Muscle Fatigue , Pyramidal Tracts , Electric Stimulation/methods , Electromyography/methods , Evoked Potentials, Motor/physiology , Humans , Male , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Transcranial Magnetic Stimulation
3.
J Strength Cond Res ; 36(2): 469-477, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-31895287

ABSTRACT

ABSTRACT: Giboin, L-S and Gruber, M. Neuromuscular fatigue induced by a mixed martial art training protocol. J Strength Cond Res 36(2): 469-477, 2022-Mixed martial arts (MMA) is a full-contact sport whose popularity and professionalism are rapidly growing. However, the specific physiological demands of this sport have been only scarcely studied so far, and especially the amount or type of neuromuscular fatigue induced by an MMA bout remains completely unknown. We estimated neuromuscular fatigue of knee extensors muscles during and after an MMA training protocol designed to simulate the physiological demands of MMA competition in competitive practitioners (n = 9) with isometric maximal voluntary force (MVF), potentiated muscle twitch at rest (Ptw), and voluntary activation (VA). Bayesian linear mixed models showed that the training protocol induced a reduction of MVF, Ptw, and VA. Although the largest reduction across time of VA was smaller than the largest reduction of Ptw, an effect of VA, but not of Ptw, was found on MVF variation. The training protocol induced neuromuscular fatigue, with a larger peripheral (Ptw) than central component (VA). However, despite the large decrease in Ptw, force production capacity was related only to VA, indicating that central control might play an important role in the compensation of the peripheral fatigue components estimated with Ptw. This central compensation can most probably prevent a too large loss of muscle force during the training protocol.


Subject(s)
Martial Arts , Muscle Fatigue , Bayes Theorem , Electromyography , Humans , Isometric Contraction , Knee , Muscle, Skeletal
4.
Front Physiol ; 12: 736067, 2021.
Article in English | MEDLINE | ID: mdl-34867445

ABSTRACT

The impact of endurance training on spinal neural circuitries remains largely unknown. Some studies have reported higher H-reflexes in endurance trained athletes and therefore, adaptations within the Ia afferent pathways after long term endurance training have been suggested. In the present study we tested the hypothesis that cyclists (n = 12) demonstrate higher Hoffmann reflexes (H-reflexes) compared to recreationally active controls (n = 10). Notwithstanding, highly significant differences in endurance performance (VO2peak: 60.6 for cyclists vs. 46.3 ml/min/kg for controls (p < 0.001) there was no difference in the size of the SOL H-reflex between cyclists and controls (Hmax/Mmax ratio 61.3 vs. 60.0%, respectively (p = 0.840). Further analyses of the H and M recruitment curves for SOL revealed a significant steeper slope of the M recruitment curve in the group of cyclists (76.2 ± 3.8° vs. 72.0 ± 4.4°, p = 0.046) without a difference in the H-recruitment curve (84.6 ± 3.0° vs. 85.0 ± 2.8°, p = 0.784) compared to the control group. Cycling is classified as an endurance sport and thus the findings of the present study do not further support the assumption that long-term aerobic training leads to a general increase of the H-reflex. Amongst methodological differences in assessing the H-reflex, the training-specific sensorimotor control of the endurance sport itself might differently affect the responsiveness of spinal motoneurons on Ia-afferent inputs.

5.
Front Psychol ; 12: 668108, 2021.
Article in English | MEDLINE | ID: mdl-34177728

ABSTRACT

In order to perform at the highest level, elite shooters have to remain focused during the whole course of a tournament, which regularly lasts multiple hours. Investing self-control over extended time periods is often associated with lower levels of perceived self-control strength (i.e., the subjective estimation of how much mental effort one is capable of investing in a given task) and impaired performance in several sports-related domains. However, previous findings on the effects of prior self-control efforts on shooting performance have been mixed, as elite shooters seem to be less affected by preceding self-control demanding tasks than sub-elite athletes. Therefore, the aim of the present study was to investigate the effects of self-control on shooting performance in elite shooters. Hence, we randomly assigned elite shooters to an experimental (n = 12) or a control condition (n = 11) and asked them to perform a series of 40 shots at baseline (T1) and again after a task which either did or did not require self-control (T2). Additionally, we continuously measured the shooters' level of perceived self-control strength. We assumed that in elite athletes, shooting accuracy as well as the perceived level of self-control strength would not be significantly affected over time from T1 to T2 in both conditions. In line with our assumptions, Bayesian linear mixed effect models revealed that shooting performance remained relatively stable in both conditions over time and the conditions also did not differ significantly in their perceived levels of self-control strength. Contrary to resource-based theories of self-control, these results speak against the idea of a limited self-control resource as previous acts of self-control did not impair subsequent shooting performance in elite athletes.

6.
Neuroimage ; 226: 117576, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33221450

ABSTRACT

Notwithstanding the apparent demands regarding fine motor skills that are required to perform in action video games, the motor nervous system of players has not been studied systematically. In the present study, we hypothesized to find differences in sensorimotor performance and corticospinal characteristics between action video game players (Players) and Controls. We tested sensorimotor performance in video games tasks and used transcranial magnetic stimulation (TMS) to measure motor map, input-output (IO) and short intra-cortical inhibition (SICI) curves in the first dorsal interosseous (FDI) muscle of Players (n = 18) and Control (n = 18). Players scored higher in performance tests and had stronger SICI and higher motor evoked potential (MEP) amplitudes. Multiple linear regressions showed that Players and Control differed with respect to their relation between reaction time and corticospinal excitability. However, we did not find different motor map topography or different IO curves for Players when compared to Controls. Action video game players showed an increased efficiency of motor cortical inhibitory and excitatory neural networks. Players also showed a different relation of MEPs with reaction time. The present study demonstrates the potential of action video game players as an ideal population to study the mechanisms underlying visuomotor performance and sensorimotor learning.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Neural Inhibition/physiology , Psychomotor Performance/physiology , Video Games , Adult , Case-Control Studies , Cerebral Cortex/physiology , Electromyography , Female , Hand , Humans , Male , Muscle, Skeletal , Reaction Time , Transcranial Magnetic Stimulation , Young Adult
7.
J Physiol ; 598(10): 1943-1963, 2020 05.
Article in English | MEDLINE | ID: mdl-32115702

ABSTRACT

KEY POINTS: The spinal cord is an important contributor to motor learning It remains unclear whether short-term spinal cord adaptations are general or task-specific Immediately after task acquisition, neural adaptations were not specific to the trained task (i.e. were general) Twenty-four hours after acquisition, neural adaptations appeared to be task-specific The neural reorganization and generalization of spinal adaptations appears to be time-dependent. ABSTRACT: Spinal cord plasticity is an important contributor of motor learning in humans, although its mechanisms are still poorly documented. In particular, it remains unclear whether short-term spinal adaptations are general or task-specific. As a marker of neural changes that are observable at spinal level, we measured the Hoffmann reflex (H-reflex) amplitude in the soleus muscle of 18 young healthy human adults before, immediately after (acquisition), and 24 h after (retention) the learning of a skilled task (i.e. one-legged stance on a tilt board). H-reflexes were elicited 46 ± 30 ms before touching the tilt board. Additionally, and at the same time points, we measured the H-reflex with the subject sitting at rest and when performing an unskilled and untrained task (i.e. one-legged stance on the floor). After task acquisition, there was a decrease of the H-reflex amplitude measured at rest but not during the skilled or the unskilled task. At retention, there was a decrease of the H-reflex when measured during the skilled task but not during the unskilled task or at rest. Performance increase was not associated with changes in the H-reflex amplitude. After the acquisition of a new skilled task, spinal changes appeared to be general (i.e. observable at rest). However, 24 h after, these changes were task-specific (i.e. observable only during performance of the trained task). These results imply that skill training induces a time-dependent reorganization of the modulation of spinal networks, which possibly reflects a time-dependent optimization of the feedforward motor command.


Subject(s)
H-Reflex , Muscle, Skeletal , Adult , Electric Stimulation , Electromyography , Humans , Spinal Cord
8.
Exp Brain Res ; 238(2): 465-476, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31955233

ABSTRACT

Studies investigating balance control often use external perturbations to probe the system. These perturbations can be administered as randomized, pseudo-randomized, or predictable sequences. As predictability of a given perturbation can affect balance performance, the way those perturbations are constructed may affect the results of the experiments. In the present study, we hypothesized that subjects are able to adapt to short, rhythmic support surface tilt stimuli, but not to long pseudo-random stimuli. 19 subjects were standing with eyes closed on a servo-controlled platform tilting about the ankle joint axis. Pre and post to the learning intervention, pseudo-random tilt sequences were applied. For the learning phase, a rhythmic and easy-to-memorize 8-s long sequence was applied 75 times, where subjects were instructed to stand as still as possible. Body kinematics were measured and whole body center of mass sway was analyzed. Results showed reduced sway and less forward lean of the body across the learning phase. The sway reductions were similar for stimulus and non-stimulus frequencies. Surprisingly, for the pseudo-random sequences, comparable changes were found from pre- to post-tests. In summary, results confirmed that considerable adaptations exist when exposing subjects to an 8-s long rhythmic perturbation. No indications of predictions of the learning tilt sequence were found, since similar changes were also observed in response to pseudo-random sequences. We conclude that changes in body sway responses following 75 repetitions of an 8-s long rhythmic tilt sequence are due to adaptations in the dynamics of the control mechanism (presumably stiffness).


Subject(s)
Adaptation, Physiological/physiology , Ankle Joint/physiology , Postural Balance/physiology , Posture/physiology , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male
9.
Article in English | MEDLINE | ID: mdl-31719991

ABSTRACT

BACKGROUND: Training programs for fall prevention often fail to induce large general effects. To improve the efficacy of fall prevention programs, it is crucial to determine which type of training is most effective in inducing generalizable effects, i.e., improvements in untrained situations. Two likely candidates are balance and resistance training. Here, we assessed whether either varied balance training or a training program aiming to increase leg power would improve performance and acquisition rate of a novel balance task. METHODS: Forty-two healthy recreationally active subjects (16 females, age 24 ± 3y) were assigned to a control group, a varied practice balance group or a loaded squat and plyometrics power group, training for 6 weeks (twice per week, 40 min per session). Before and after the training, we measured peak power in countermovement jumps and balance performance in two different untrained balance tasks (10 trials pre and 50 trials post-training). RESULTS: After training, the performance and the acquisition rate in the two untrained tasks were similar for all groups (no group x time interaction), i.e., no generalization of learning effect was induced by either form of training. Peak power in the countermovement jump did not change significantly in any of the groups. CONCLUSIONS: Neither a six-week power training nor a varied balance training improved performance or acquisition of an untrained balance task. This underpins the task-specificity principle of training and emphasizes the need for studies that assess the mechanisms of transfer and generalization, thus helping to find more effective intervention programs for fall prevention.

10.
Brain Sci ; 9(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717558

ABSTRACT

It has been proposed that one reason physical effort is perceived as costly is because of the self-control demands that are necessary to persist in a physically demanding task. The application of control has been conceptualized as a value-based decision, that hinges on an optimization of the costs of control and available reward. Here, we drew on labor supply theory to investigate the effects of an Income Compensated Wage Decrease (ICWD) on persistence in a strenuous physical task. Research has shown that an ICWD reduced the amount of self-control participants are willing to apply, and we expected this to translate to a performance decrement in a strenuous physical task. Contrary to our expectations, participants in the ICWD group outperformed the control group in terms of persistence, without incurring higher levels of muscle fatigue or ratings of perceived exertion. Improved performance was accompanied by increases in task efficiency and a lesser increase in oxygenation of the prefrontal cortex, an area of relevance for the application of self-control. These results suggest that the relationship between the regulation of physical effort and self-control is less straightforward than initially assumed: less top-down self-control might allow for more efficient execution of motor tasks, thereby allowing for improved performance. Moreover, these findings indicate that psychological manipulations can affect physical performance, not by modulating how much one is willing to deplete limited physical resources, but by altering how tasks are executed.

11.
Neuroimage ; 202: 116061, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31374329

ABSTRACT

Humans develop posture and balance control during childhood. Interestingly, adults can also learn to master new complex balance tasks, but the underlying neural mechanisms are not fully understood yet. Here, we combined broad scale brain connectivity fMRI at rest and spinal excitability measurements during movement. Six weeks of slackline training improved the capability to walk on a slackline which was paralleled by functional connectivity changes in brain regions associated with posture and balance control and by task-specific changes of spinal excitability. Importantly, the performance of trainees was not better than control participants in a different, untrained balance task. In conclusion, slackline training induced large-scale neuroplasticity which solely transferred into highly task specific performance improvements.


Subject(s)
Brain/physiology , Connectome , H-Reflex/physiology , Learning/physiology , Motor Activity/physiology , Muscle, Skeletal/physiology , Neuronal Plasticity/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Spinal Cord/physiology , Transfer, Psychology/physiology , Adult , Brain/diagnostic imaging , Electromyography , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
12.
J Sci Med Sport ; 22(1): 101-105, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29921504

ABSTRACT

OBJECTIVES: We wanted to verify if the "learning to learn" effect observed in the learning of visuomotor tasks is also present when learning a balance task, i.e., whether the learning rate of a balance task is improved by prior practice of similar balance tasks. DESIGN: Single centre, parallel group, controlled training study. METHODS: 32 young healthy participants were divided into a control and a training group. The training group's practice consisted of 90 trials of three balance tasks. Forty-eight hours after the training, we recorded performance during the acquisition (90 trials) of a novel balance task in both groups, and 24h thereafter we measured its retention (10 trials). RESULTS: Mixed models statistical analysis showed that the learning rate of both the acquisition and the retention phase was not influenced by the 90 prior practice trials performed by the training group. However, participants with high lower limb power had a higher balance performance than participants with low power, which can be partly explained by the higher learning rate observed during the acquisition phase for participants with high power. CONCLUSIONS: Contrary to visuomotor or perceptual tasks, we did not find a "learning to learn" effect for balance tasks. The correlation between learning rate and lower limb power suggests that motor learning of dynamic balance tasks may depend on the physical capability to execute the correct movement. Thus, a prior strength and conditioning program with emphasis on lower limb power should be considered when designing a balance training, especially in fall prevention.


Subject(s)
Learning , Lower Extremity/physiology , Motor Skills , Postural Balance , Adult , Female , Humans , Male , Physical Conditioning, Human , Young Adult
13.
Front Physiol ; 10: 1578, 2019.
Article in English | MEDLINE | ID: mdl-32116731

ABSTRACT

Previous research demonstrated that six sessions of cycling sprint-interval training (SIT) within a duration of only 2 weeks can increase endurance performance considerably. Primarily muscular mechanisms have been under investigation explaining such performance improvements. However, it has been shown in other exercise tasks that training-induced changes also occur at the level of the central nervous system. Therefore, we hypothesized to observe an enhanced neuromuscular performance in conjunction with an increase in endurance performance after 2 weeks of SIT. Therefore, we randomly assigned 19 healthy men (26 ± 5 years) to a control (n = 10) or a training group (n = 9), the latter performing a replication of the SIT protocol from Burgomaster et al. Before and after the training intervention, both groups performed a cycling endurance test until exhaustion. Neuromuscular function of the right vastus lateralis muscle was assessed before and after each endurance task by the means of maximal voluntary isometric contractions (MVCs). The variables of interest being MVC, voluntary activation was measured by peripheral nerve stimulations (VAPNS), by transcranial magnetic stimulation (VATMS), as well as potentiated resting twitches (Qtw,pot). We did not find any significant differences between the groups in the control variable time to exhaustion in the endurance task. In addition, we did not observe any time × group interaction effect in any of the neuromuscular parameters. However, we found a significant large-sized time effect in all neuromuscular variables (MVC, η p 2 = 0.181; VATMS, η p 2 = 0.250; VAPNS, η p 2 = 0.250; Qtw,pot, η p 2 = 0.304) as well as time to exhaustion η p 2 = 0.601). In contrast to other studies, we could not show that a short-term SIT is able to increase endurance performance. An unchanged endurance performance after training most likely explains the lack of differences in neuromuscular variables between groups. These findings demonstrate that replication studies are needed to verify results no matter how strong they seem to be. Differences over time for the variables of neuromuscular fatigue irrespective of group (MVC, + 9.3%; VATMS, + 0.2%; VAPNS, + 6.3%; Qtw,pot, + 6.3%) demonstrate test-retest effects that should be taken into consideration in future training studies and emphasize the inevitable necessity for controlled experiments.

14.
PLoS One ; 13(11): e0207542, 2018.
Article in English | MEDLINE | ID: mdl-30475850

ABSTRACT

Slackline training is a challenging and motivating type of balance training, with potential usefulness for fall prevention and balance rehabilitation. However, short-term slackline training seems to elicit mostly task-specific performance improvements, reducing its potential for general fall prevention programs. It was tested whether a longer duration slackline training (three months, 2 sessions per week) would induce a transfer to untrained tasks. Balance performance was tested pre and post slackline training on the slackline used during the training, on a slackline with different slack, and in 5 different non-trained static and dynamic balance tasks (N training = 12, N control = 14). After the training, the training group increased their performance more than the control group in both of the slackline tasks, i.e. walking on the slackline (time × group interaction with p < 0.001 for both tasks). However, no differences between groups were found for the 5 non-trained balance tasks, only a main effect of time for four of them. The long-term slackline training elicited large task-specific performance improvements but no transfer to other non-trained balance tasks. The extensive slackline training that clearly enhanced slackline performance did not improve the capability to keep balance in other tasks and thus cannot be recommended as a general fall prevention program. The significant test-retest effect seen in most of the tested tasks emphasizes the need of a control group to adequately interpret changes in performance following balance training.


Subject(s)
Accidental Falls/prevention & control , Physical Conditioning, Human/methods , Postural Balance , Adult , Female , Humans , Male , Young Adult
15.
Front Physiol ; 9: 1319, 2018.
Article in English | MEDLINE | ID: mdl-30283361

ABSTRACT

Background: It has been shown that balance training induces task-specific performance improvements with very limited transfer to untrained tasks. Thus, regarding fall prevention, one strategy is to practice as many tasks as possible to be prepared for a multitude of situations with increased fall risk. However, it is not clear whether the learning of several different balance tasks interfere with each other. A positive influence could be possible via the contextual interference (CI) effect, a negative influence could be induced by the disruption of motor memory during consolidation or retrieval. Methods: In two 3-week training experiments, we tested: (1) whether adding an additional balance task in the same training session would influence the learning of a balance task [first task: one-leg stance on a tilt-board (TB), six sessions, 15 × 20 s per session; additional task: one-leg stance on a slack line (SL), same amount of additional training]; (2) whether performing a different balance task (SL) in between training sessions of the first task (TB) would influence the learning of the first task. Twenty-six healthy subjects participated in the first experiment, 40 in the second experiment. In both experiments the participants were divided into three groups, TB only, TB and SL, and control. Before and after the training period, performance during the TB task (3 × 20 s) was recorded with a Vicon motion capturing system to assess the time in equilibrium. Results: Analyses of variance revealed that neither the additional intra-session balance task in experiment 1 nor the inter-session task in experiment 2 had a significant effect on balance performance improvement in the first task (no significant group × time interaction effect for the training groups, p = 0.83 and p = 0.82, respectively, only main effects of time). Conclusion: We could not find that additional intra- or intersession balance tasks interfere with the learning of a balance task, neither impairing it nor having a significant positive effect. This can also be interpreted as further evidence for the specificity of balance training effects, as different balance tasks do not seem to elicit interacting adaptations.

16.
PLoS One ; 13(5): e0197339, 2018.
Article in English | MEDLINE | ID: mdl-29758055

ABSTRACT

PURPOSE: Active recovery is often used by athletes after strenuous exercise or competition but its underlying mechanisms are not well understood. We hypothesized that active recovery speeds-up recovery processes within the muscle and the central nervous system (CNS). METHODS: We assessed muscular and CNS recovery by measuring the voluntary activation (VA) in the vastus lateralis muscle with transcranial magnetic stimulation (VATMS) and peripheral nerve stimulation (VAPNS) during maximal voluntary contractions (MVC) of the knee extensors in 11 subjects. Measurements were performed before and after a fatiguing cycling time-trial, after an active and a passive recovery treatment and after another fatiguing task (1 min MVC). The measurements were performed a second time 24 h after the time-trial. RESULTS: We observed a time × group interaction effect for VATMS (p = 0.013). Post-hoc corrected T-tests demonstrated an increased VATMS after active recovery when measured after the 1 min MVC performed 24 h after the time-trial (mean ± SD; 95.2 ± 4.1% vs. 89.2 ± 6.6%, p = 0.026). No significant effects were observed for all other variables. CONCLUSIONS: Active recovery increased aspects of central, rather than muscle recovery. However, no effect on MVC was seen, implying that even if active recovery speeds up CNS recovery, without affecting the recovery of muscle contractile properties, this doesn´t translate into increases in overall performance.


Subject(s)
Exercise Therapy , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology , Adult , Bicycling/physiology , Humans , Male
17.
J Neurosci Res ; 96(9): 1600-1609, 2018 09.
Article in English | MEDLINE | ID: mdl-29696675

ABSTRACT

Transcranial direct current stimulation (tDCS) has the capacity to enhance force output during a short-lasting maximal voluntary contraction (MVC) as well as during a long-lasting submaximal voluntary contraction until task failure. However, its effect on an intermittent maximal effort is not known. We hypothesized that anodal tDCS applied during or before a maximal fatigue task increases the amplitude of maximal voluntary contraction (aMVC) and voluntary activation (VA) in young healthy male participants. We measured VA, potentiated twitch at rest (Ptw), root mean square electromyogram (EMG), and aMVC during a fatiguing task that consisted of 35 × 5 s MVC of knee extensors and was performed during tDCS or 10 min after the end of tDCS (sham, anodal, or cathodal treatments). No effect of tDCS was detected on the first MVC but, when compared to sham tDCS, both anodal tDCS and cathodal tDCS reduced aMVC when tDCS was applied during the task (p < .001) and only anodal tDCS reduced aMVC when applied 10 min before the task (p = .03). The reductions in aMVC were accompanied by reductions in EMG of M. vastus lateralis for both tDCS treatments as well as in Ptw only during anodal tDCS and in VA only during cathodal tDCS. Both cathodal tDCS and anodal tDCS impaired force production during an intermittent fatiguing MVC task. The detrimental effects were stronger when tDCS was applied during the task. Here, cathodal and anodal tDCS specifically affected Ptw and VA indicating different underlying mechanisms.


Subject(s)
Cerebral Cortex/physiology , Fatigue/physiopathology , Muscle Contraction , Quadriceps Muscle/physiology , Transcranial Direct Current Stimulation , Adult , Electric Stimulation , Humans , Male , Young Adult
18.
Physiol Rep ; 5(20)2017 Nov.
Article in English | MEDLINE | ID: mdl-29084839

ABSTRACT

Inhibitory propriospinal neurons with diffuse projections onto upper limb motoneurons have been revealed in humans using peripheral nerve stimulation. This system is supposed to mediate descending inhibition to motoneurons, to prevent unwilling muscle activity. However, the corticospinal control onto inhibitory propriospinal neurons has never been investigated so far in humans. We addressed the question whether inhibitory cervical propriospinal neurons receive corticospinal inputs from primary motor (M1) and ventral premotor areas (PMv) using spatial facilitation method. We have stimulated M1 or PMv using transcranial magnetic stimulation (TMS) and/or median nerve whose afferents are known to activate inhibitory propriospinal neurons. Potential input convergence was evaluated by studying the change in monosynaptic reflexes produced in wrist extensor electromyogram (EMG) after isolated and combined stimuli in 17 healthy subjects. Then, to determine whether PMv controlled propriospinal neurons directly or through PMv-M1 interaction, we tested the connectivity between PMv and propriospinal neurons after a functional disruption of M1 produced by paired continuous theta burst stimulation (cTBS). TMS over M1 or PMv produced reflex inhibition significantly stronger on combined stimulations, compared to the algebraic sum of effects induced by isolated stimuli. The extra-inhibition induced by PMv stimulation remained even after cTBS which depressed M1 excitability. The extra-inhibition suggests the existence of input convergence between peripheral afferents and corticospinal inputs onto inhibitory propriospinal neurons. Our results support the existence of direct descending influence from M1 and PMv onto inhibitory propriospinal neurons in humans, possibly though direct corticospinal or via reticulospinal inputs.


Subject(s)
Motor Cortex/physiology , Neural Inhibition , Neurons/physiology , Pyramidal Tracts/physiology , Adult , Beta Rhythm , Evoked Potentials, Motor , Female , Humans , Male , Motor Cortex/cytology , Proprioception , Pyramidal Tracts/cytology , Reflex , Transcranial Magnetic Stimulation
19.
Front Behav Neurosci ; 10: 150, 2016.
Article in English | MEDLINE | ID: mdl-27486391

ABSTRACT

Despite the potential of repetitive transcranial magnetic stimulation (rTMS) to improve performances in patients suffering from motor neuronal afflictions, its effect on motor performance enhancement in healthy subjects during a specific sport task is still unknown. We hypothesized that after an intermittent theta burst (iTBS) treatment, performance during the Wingate Anaerobic Test (WAnT) will increase and supraspinal fatigue following the exercise will be lower in comparison to a control treatment. Ten subjects participated in two randomized experiments consisting of a WAnT 5 min after either an iTBS or a control treatment. We determined voluntary activation (VA) of the right knee extensors with TMS (VATMS) and with peripheral nerve stimulation (VAPNS) of the femoral nerve, before and after the WAnT. T-tests were applied to the WAnT results and a two way within subject ANOVA was applied to VA results. The iTBS treatment increased the peak power and the maximum pedalling cadence and suppressed the reduction of VATMS following the WAnT compared to the control treatment. No behavioral changes related to fatigue (mean power and fatigue index) were observed. These results indicate for the first time that iTBS could be used as a potential intervention to improve anaerobic performance in a sport specific task.

20.
Sports Med ; 46(9): 1261-71, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26993132

ABSTRACT

BACKGROUND: It has become common practice to incorporate balance tasks into the training program for athletes who want to improve performance and prevent injuries, in rehabilitation programs, and in fall prevention programs for the elderly. However, it is still unclear whether incorporating balance tasks into a training program increases performance only in these specific tasks or if it affects balance in a more general way. OBJECTIVES: The objective of this systematic literature review and meta-analysis was to determine to what extent the training of balance tasks can improve performance in non-trained balance tasks. DATA SOURCES: A systematic literature search was performed in the online databases EMBASE, PubMed, SPORTDiscus and Web of Science. Articles related to balance training and testing in healthy populations published between January 1985 and March 2015 were considered. STUDY ELIGIBILITY CRITERIA: A total of 3093 articles were systematically evaluated. Randomized controlled trials were included that (i) used only balance tasks during the training, (ii) used at least two balance tests before and after training, and (iii) tested performance in the trained balance tasks and at least one non-trained balance task. Six studies with a total of 102 subjects met these criteria and were included into the meta-analysis. STUDY APPRAISAL AND SYNTHESIS METHODS: The quality of the studies was evaluated by means of the Physiotherapy Evidence Database (PEDro) scale. A random effect model was used to calculate the between-subject standardized mean differences (SMDbs) in order to quantify the effect of balance training on various kinds of balance measures relative to controls. The tested balance tasks in each study were classified into tasks that had been trained and tasks that had not been trained. For further analyses, the non-trained balance tasks were subdivided into tasks with similar or non-similar body position and similar or non-similar balance perturbation direction compared to the trained task. RESULTS: The effect of balance training on the performance of the trained balance tasks reached an SMDbs of 0.79 [95 % confidence interval (CI) 0.48-1.10], indicating a high effect in favor for the trained task, with no notable heterogeneity (I (2) = 0 %). The SMDbs in non-trained categories reached values between -0.07 (95 % CI -0.53 to 0.38) and 0.18 (95 % CI -0.27 to 0.64), with non-notable to moderate heterogeneity (I (2) = 0-32 %), indicating no effect of the balance training on the respective non-trained balance tasks. LIMITATIONS: With six studies, the number of studies included in this meta-analysis is rather low. It remains unclear how the limited number of studies with considerable methodological diversity affects the outcome of the SMD calculations and thus the general outcome of the meta-analysis. CONCLUSION: In healthy populations, balance training can improve the performance in trained tasks, but may have only minor or no effects on non-trained tasks. Consequently, therapists and coaches should identify exactly those tasks that need improvement, and use these tasks in the training program and as a part of the test battery that evaluates the efficacy of the training program. Generic balance tasks-such as one-leg stance-may have little value as overall balance measures or when assessing the efficacy of specific training interventions.


Subject(s)
Physical Conditioning, Human/methods , Postural Balance , Task Performance and Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...