Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0241118, 2020.
Article in English | MEDLINE | ID: mdl-33253157

ABSTRACT

Anadromous alewives (Alosa pseudoharengus) are abundant in the Canadian Maritimes, where they support lucrative commercial fisheries. Little is known about their coastal movement, and their potential to interact with anthropogenic structures. Acoustic telemetry can provide detailed information on the spatiotemporal distribution and survival of fishes in coastal areas, using information transmitted from tagged fishes and recorded by moored receivers. However, few acoustic telemetry studies have been performed on clupeids as they are extremely sensitive to handling, and are often compromised by surgical tag implantation. This research assesses the feasibility of a surgical tagging protocol using novel High Residency acoustic tags in alewives, and establishes a baseline of short-term tagging effects. Alewives from the Gaspereau River population were tagged between 2018 (n = 29) and 2019 (n = 96) with non-transmitting models of Vemco/Innovasea V5 HR tags. Tagging effects were evaluated based on recovery rate, reflex impairment, and necropsy-based health assessments. Alewives responded well to tagging, with low mortality (3%) and no observed instances of tag shedding 72 hours post-surgery. The use of sutures to close the incision site had no effect on recovery times. Water temperature and spawning condition had the greatest effect on the behavioural response of fish to tagging. Our findings suggest that, with proper handling and smaller acoustic tags, telemetry studies on alewives are feasible.


Subject(s)
Fishes/physiology , Acoustics , Animals , Canada , Feasibility Studies , Fisheries , Rivers , Telemetry/methods , Temperature
2.
Ecol Evol ; 10(11): 4990-5000, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551076

ABSTRACT

To effectively protect at-risk sharks, resource managers and conservation practitioners must have a good understanding of how fisheries removals contribute to changes in abundance and how regulatory restrictions may impact a population trajectory. This means they need to know the number of animals being removed from a population and whether a given number of removals will lead to population increases or declines. For white shark (Carcharodon carcharias), theoretical quantities like the intrinsic rate of population increase or rebound potential (ability to increase in size following decline) are difficult to conceptualize in terms of real-world abundance changes, which limits our ability to answer practical management questions. To address this shortfall, we designed a simulation model to evaluate how our understanding of longevity and life history variability of white shark affects our understanding of population trends in the Northwest Atlantic. Then, we quantified the magnitude of removals that could have caused historical population declines, compared these to biologically based reference points, and explored the removal scenarios which would result in population increase. Our results suggest that removals on the order of 100s of juveniles per year could have resulted in population-level declines in excess of 60% during the 1970s and 1980s. Conservation actions implemented since the 1990s would have needed to be nearly 100% effective at preventing fishing mortality in order for the population to double in abundance over the last 30 years. Total removals from all fleets needed to be exceptionally small to keep them below biological reference points for white shark in the Northwest Atlantic. The population's inherent vulnerability to fishing pressure reaffirms the need for restrictive national and international conservation measures, even under a situation of abundance increase.

3.
Ecol Evol ; 5(16): 3450-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26380677

ABSTRACT

Describing how population-level survival rates are influenced by environmental change becomes necessary during recovery planning to identify threats that should be the focus for future remediation efforts. However, the ways in which data are analyzed have the potential to change our ecological understanding and thus subsequent recommendations for remedial actions to address threats. In regression, distributional assumptions underlying short time series of survival estimates cannot be investigated a priori and data likely contain points that do not follow the general trend (outliers) as well as contain additional variation relative to an assumed distribution (overdispersion). Using juvenile survival data from three endangered Atlantic salmon Salmo salar L. populations in response to hydrological variation, four distributions for the response were compared using lognormal and generalized linear models (GLM). The influence of outliers as well as overdispersion was investigated by comparing conclusions from robust regressions with these lognormal models and GLMs. The analyses strongly supported the use of a lognormal distribution for survival estimates (i.e., modeling the instantaneous rate of mortality as the response) and would have led to ambiguity in the identification of significant hydrological predictors as well as low overall confidence in the predicted relationships if only GLMs had been considered. However, using robust regression to evaluate the effect of additional variation and outliers in the data relative to regression assumptions resulted in a better understanding of relationships between hydrological variables and survival that could be used for population-specific recovery planning. This manuscript highlights how a systematic analysis that explicitly considers what monitoring data represent and where variation is likely to come from is required in order to draw meaningful conclusions when analyzing changes in survival relative to environmental variation to aid in recovery planning.

4.
Evolution ; 58(12): 2704-17, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15696749

ABSTRACT

Poecilogony is the production of more than one type of young within a single species of marine invertebrate. We chose a poecilogonous polychaete to investigate potential differences in morphogenesis among offspring that are polymorphic in dispersal potentials (planktonic, benthic) and trophic modes (planktotrophy, adelphophagy). Differences in morphogenesis occur and are strongly influenced by maternal type. Females that provide extra-embryonic nutrition (as nurse eggs; type III females) also produce offspring with an accelerated onset of juvenile traits, relative to planktotrophic offspring of females that do not provide extra-embryonic nutrition (type I females). Thus, progeny of some females appear morphologically preadapted for a benthic lifestyle. Surprisingly, differences in phenotype among offspring do not parallel offspring ecotype, as offspring with early onset of juvenile traits (III) are ecologically bimodal. Some Type III offspring eat the nurse eggs (adelphophagy), have accelerated development, and hatch as benthic juveniles. In contrast, their siblings hatch as small, planktotrophic, dispersive larvae that are morphologically similar to their type III siblings, but ecologically similar to Type I planktotrophic larvae. We propose that poecilogony evolved through sequence heterochrony in morphogenesis with accelerated onset of juvenile traits in type III offspring. In addition, we suggest that heterochrony in life-history events (hatching, metamorphosis) also occurs, thereby generating offspring that are dimorphic in both phenotype and ecotype. Over time, selection acting on different levels of ontogeny (morphogenesis vs. dispersal) may balance this polymorphism and allow poecilogony to persist.


Subject(s)
Biological Evolution , Environment , Life Cycle Stages/physiology , Morphogenesis , Phenotype , Polychaeta/growth & development , Animal Nutritional Physiological Phenomena , Animals , Feeding Behavior/physiology , Female , Larva/growth & development , Larva/ultrastructure , Life Cycle Stages/genetics , Microscopy, Electron, Scanning , Models, Biological , Polychaeta/genetics , Spatial Behavior/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...