Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(8): 7629-7636, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28169515

ABSTRACT

The deposition of nanoliter and subnanoliter volumes is important in chemical and biochemical droplet-based microfluidic systems. There are several techniques that have been established for the deposition/generation of small volumes including the use of surfaces with patterned differences in wettability. Many such methods require complex and time-consuming lithographic techniques. Here, we present a facile method for the fabrication of superhydrophobic surfaces with patterned hydrophilic regions by laser micromachining. A comprehensive study of fabrication parameters (laser machining speed, laser power, and patch size) on the material, patch wettability, and droplet volume is presented. Patch sizes as small as 100 µm diameter and as large as 1500 µm diameter were investigated, and volumes as low as 400 pL were observed. As an example application of such patterned materials and the deposition of small volumes, halide salts were preconcentrated on the hydrophilic patches, and their fluorescence quenching constants were rapidly calculated using a 3D-printed device coupled to a fluorescence spectrometer.

2.
Sci Rep ; 6: 21279, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26891920

ABSTRACT

This work highlights the possibility of using microstructured fibres with predefined doped regions to produce functional microstructures at a fibre facet with differential chemical etching. A specially designed silica microstructured fibre (MSF) that possesses specific boron-doped silica regions was fabricated for the purpose of generating a radial micronozzle array. The MSF was drawn from a preform comprising pure silica capillaries surrounded by boron-doped silica rods. Different etching rates of the boron-doped and silica regions at the fiber facet produces raised nozzles where the silica capillaries were placed. Fabrication parameters were explored in relation to the fidelity and protrusion length of the nozzle. Using etching alone, the nozzle protrusion length was limited, and the inner diameter of the channels in the array is expanded. However with the addition of a protective water counter flow, nozzle protrusion is increased to 60 µm with a limited increase in hole diameter. The radial micronozzle array generated nine individual electrosprays which were characterized using spray current measurements and related to theoretical prediction. Signal enhancement for the higher charge state ions for two peptides showed a substantial signal enhancement compared to conventional emitter technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...