Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 137(12): 4126-33, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25781631

ABSTRACT

Chalcogen bonding is the noncovalent interaction between an electron-deficient, covalently bonded chalcogen (Te, Se, S) and a Lewis base. Although substantial evidence supports the existence of chalcogen bonding in the solid state, quantitative data regarding the strengths of the interactions in the solution phase are lacking. Herein, determinations of the association constants of benzotelluradiazoles with a variety of Lewis bases (Cl(-), Br(-), I(-), NO3(-) and quinuclidine, in organic solvent) are described. The participation of the benzotelluradiazoles in chalcogen bonding interactions was probed by UV-vis, (1)H and (19)F NMR spectroscopy as well as nano-ESI mass spectrometry. Trends in the free energy of chalcogen bonds upon variation of the donor, acceptor and solvent are evident from these data, including a linear free energy relationship between chalcogen bond donor ability and calculated electrostatic potential at the tellurium center. Calculations using the dispersion-corrected B97-D3 functional were found to give good agreement with the experimental free energies of chalcogen bonding.

2.
J Am Chem Soc ; 135(35): 13212-9, 2013 Sep 04.
Article in English | MEDLINE | ID: mdl-23937150

ABSTRACT

Electron-deficient π-conjugated polymers are important for organic electronics, yet the ability to polymerize electron-deficient monomers in a controlled manner is challenging. Here we show that Ni(II)diimine catalysts are well suited for the controlled polymerization of electron-deficient heterocycles. The relative stability of the calculated catalyst-monomer (or catalyst-chain end) complex directly influences the polymerization. When the complex is predicted to be most stable (139.2 kJ/mol), these catalysts display rapid reaction kinetics, leading to relatively low polydispersities (∼1.5), chain lengths that are controlled by monomer:catalyst ratio, controlled monomer consumption up to 60% conversion, linear chain length growth up to 40% conversion, and 'living' chain ends that can be readily extended by adding more monomer. These are desirable features that highlight the importance of catalyst design for the synthesis of new conjugated polymers.

3.
J Am Chem Soc ; 134(1): 539-47, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22129273

ABSTRACT

We have synthesized a series of cyclopentadithiophene-benzochalcogenodiazole donor-acceptor (D-A) copolymers, wherein a single atom in the benzochalcogenodiazole unit is varied from sulfur to selenium to tellurium, which allows us to explicitly study sulfur to selenium to tellurium substitution in D-A copolymers for the first time. The synthesis of S- and Se-containing polymers is straightforward; however, Te-containing polymers must be prepared by postpolymerization single atom substitution. All of the polymers have the representative dual-band optical absorption profile, consisting of both a low- and high-energy optical transition. Optical spectroscopy reveals that heavy atom substitution leads to a red-shift in the low-energy transition, while the high-energy band remains relatively constant in energy. The red-shift in the low-energy transition leads to optical band gap values of 1.59, 1.46, and 1.06 eV for the S-, Se-, and Te-containing polymers, respectively. Additionally, the strength of the low-energy band decreases, while the high-energy band remains constant. These trends cannot be explained by the present D and A theory where optical properties are governed exclusively by the strength of D and A units. A series of optical spectroscopy experiments, solvatochromism studies, density functional theory (DFT) calculations, and time-dependent DFT calculations are used to understand these trends. The red-shift in low-energy absorption is likely due to both a decrease in ionization potential and an increase in bond length and decrease in acceptor aromaticity. The loss of intensity of the low-energy band is likely the result of a loss of electronegativity and the acceptor unit's ability to separate charge. Overall, in addition to the established theory that difference in electron density of the D and A units controls the band gap, single atom substitution at key positions can be used to control the band gap of D-A copolymers.

4.
Chem Commun (Camb) ; (3): 304-6, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19209310

ABSTRACT

A bulky secondary phosphine with an alkynyl substituent was prepared and shown to undergo catalytic hydrophosphination to give cyclic oligomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...