Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27230-27241, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752720

ABSTRACT

The reactivity of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) solid electrolytes to form lithio-phobic species such as Li2CO3 on their surface when exposed to trace amounts of H2O and CO2 limits the progress of LLZTO-based solid-state batteries. Various treatments, such as annealing LLZTO within a glovebox or acid etching, aim at removing the surface contaminants, but a comprehensive understanding of the evolving LLZTO surface chemistry during and after these treatments is lacking. Here, glovebox-like H2O and CO2 conditions were recreated in a near ambient pressure X-ray photoelectron spectroscopy chamber to analyze the LLZTO surface under realistic conditions. We find that annealing LLZTO at 600 °C in this atmosphere effectively removes the surface contaminants, but a significant level of contamination reappears upon cooling down. In contrast, HCl(aq) acid etching demonstrates superior Li2CO3 removal and stable surface chemistry post treatment. To avoid air exposure during the acid treatment, an anhydrous HCl solution in diethyl ether was used directly within the glovebox. This novel acid etching strategy delivers the lowest lithium/LLZTO interfacial resistance and the highest critical current density.

2.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301872

ABSTRACT

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Subject(s)
Carbon Dioxide , Polymers , Copper , Carbon Monoxide , Porosity
3.
J Am Chem Soc ; 145(12): 6730-6740, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36916242

ABSTRACT

The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.

4.
Nat Commun ; 13(1): 7237, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36433957

ABSTRACT

Understanding the chemical composition and morphological evolution of the solid electrolyte interphase (SEI) formed at the interface between the lithium metal electrode and an inorganic solid-state electrolyte is crucial for developing reliable all-solid-state lithium batteries. To better understand the interaction between these cell components, we carry out X-ray photoemission spectroscopy (XPS) measurements during lithium plating on the surface of a Li6PS5Cl solid-state electrolyte pellet using an electron beam. The analyses of the XPS data highlight the role of Li plating current density on the evolution of a uniform and ionically conductive (i.e., Li3P-rich) SEI capable of decreasing the electrode∣solid electrolyte interfacial resistance. The XPS findings are validated via electrochemical impedance spectrsocopy measurements of all-solid-state lithium-based cells.

5.
ACS Energy Lett ; 7(10): 3593-3599, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36277136

ABSTRACT

Lithium metal self-diffusion is too slow to sustain large current densities at the interface with a solid electrolyte, and the resulting formation of voids on stripping is a major limiting factor for the power density of solid-state cells. The enhanced morphological stability of some lithium alloy electrodes has prompted questions on the role of lithium diffusivity in these materials. Here, the lithium diffusivity in Li-Mg alloys is investigated by an isotope tracer method, revealing that the presence of magnesium slows down the diffusion of lithium. For large stripping currents the delithiation process is diffusion-limited, hence a lithium metal electrode yields a larger capacity than a Li-Mg electrode. However, at lower currents we explain the apparent contradiction that more lithium can be extracted from Li-Mg electrodes by showing that the alloy can maintain a more geometrically stable diffusion path to the solid electrolyte surface so that the effective lithium diffusivity is improved.

8.
Faraday Discuss ; 236(0): 267-287, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35543094

ABSTRACT

The key charge transfer processes in electrochemical energy storage devices occur at electrode-electrolyte interfaces, which are typically buried, making it challenging to access their interfacial chemistry. In the case of Li-ion batteries, metallic Li electrodes hold promise for increasing energy and power densities and, when used in conjunction with solid electrolytes, the adverse safety implications associated with dendrite formation in organic liquid electrolytes can potentially be overcome. To better understand the stability of solid electrolytes when in contact with alkali metals and the reactions that occur, here we consider the deposition of thin (∼10 nm) alkali metal films onto solid electrolyte surfaces, where the metal is thin enough that X-ray photoelectron spectroscopy can probe the buried electrode-electrolyte interface. We highlight the importance of in situ alkali metal deposition by assessing the contaminant species that are present after glovebox handling and the use of 'inert' transfer devices. Consequently, we compare and contrast three available methods for in situ alkali-metal deposition; Li sputter deposition, Li evaporation, and Li plating induced by e- flood-gun irradiation. Studies on both a sulphide solid electrolyte (Li6PS5Cl), and a single-layer graphene probe surface reveal that the more energetic Li deposition methods, such as sputtering, can induce surface damage and interfacial mixing that are not seen with thermal evaporation. This indicates that the appropriate selection of the Li deposition method for in situ studies is required to observe representative behaviour, and the results of previous studies involving energetic deposition may warrant further evaluation.

9.
Chemphyschem ; 22(7): 684-692, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33534936

ABSTRACT

Self-assembled monolayers (SAMs) based on oligopeptides have garnered immense interest for a wide variety of innovative biomedical and electronic applications. However, to exploit their full potential, it is necessary to understand and control the surface chemistry of oligopeptides. Herein, we report on how different electrical potentials affect the adsorption kinetics, stability and surface coverage of charged oligopeptide SAMs on gold surfaces. Kinetic analysis using electrochemical surface plasmon resonance (e-SPR) reveals a slower oligopeptide adsorption rate at more positive or negative electrical potentials. Additional analysis of the potential-assisted formed SAMs by X-ray photoelectron spectroscopy demonstrates that an applied electrical potential has minimal effect on the packing density. These findings not only reveal that charged oligopeptides exhibit a distinct potential-assisted assembly behaviour but that an electrical potential offers another degree of freedom in controlling their adsorption rate.


Subject(s)
Gold/chemistry , Oligopeptides/chemical synthesis , Adsorption , Electricity , Oligopeptides/chemistry , Photoelectron Spectroscopy , Surface Plasmon Resonance , Surface Properties
10.
ACS Appl Bio Mater ; 1(3): 738-747, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-34996164

ABSTRACT

The development of stimuli-responsive interfaces between synthetic materials and biological systems is providing the unprecedented ability to modulate biomolecular interactions for a diverse range of biotechnological and biomedical applications. Antibody-antigen binding interactions are at the heart of many biosensing platforms, but no attempts have been made yet to control antibody-antigen binding in an on-demand fashion. Herein, a molecular surface was designed and developed that utilizes an electric potential to drive a conformational change in surface bound peptide moiety, to give on-demand control over antigen-antibody interactions on sensor chips. The molecularly engineered surfaces allow for propagation of conformational changes from the molecular switching unit to a distal progesterone antigen, resulting in promotion (ON state) or inhibition (OFF state) of progesterone antibody binding. The approach presented here can be generally applicable to other antigen-antibody systems and meets the technological needs for in situ long-term assessment of biological processes and disease monitoring on-demand.

12.
Langmuir ; 33(34): 8436-8446, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28780867

ABSTRACT

Protic ionic liquids (PILs) are ionic liquids that are formed by transferring protons from Brønsted acids to Brønsted bases. While they nominally consist entirely of ions, PILs can often behave as though they contain a significant amount of neutral species (either molecules or ion clusters), and there is currently a lot of interest in determining the degree of "ionicity" of PILs. In this contribution, we describe a simple electroanalytical method for detecting and quantifying residual excess acids in a series of ammonium-based PILs (diethylmethylammonium triflate [dema][TfO], dimethylethylammonium triflate [dmea][TfO], triethylammonium trifluoroacetate [tea][TfAc], and dimethylbutylammonium triflate [dmba][TfO]). Ultra-microelectrode voltammetry reveals that some of the accepted methods for synthesizing PILs can readily result in the formation of nonstoichiometric PILs containing up to 230 mM excess acid. In addition, vacuum purification of PILs is of limited use in cases where nonstoichiometric PILs are formed. Although excess bases can be readily removed from PILs under ambient conditions, excess acids cannot be removed, even under high vacuum. The effects of excess acid on the electrocatalytic oxygen reduction reaction (ORR) in PILs have been studied, and the onset potential of the ORR in [dema][TfO] increases by 0.8 V upon addition of acid to PIL. On the basis of the results of our analyses, we provide some recommendations for the synthesis of highly ionic PILs.

13.
J Chem Phys ; 144(18): 184107, 2016 May 14.
Article in English | MEDLINE | ID: mdl-27179471

ABSTRACT

The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...