Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Nanoscale ; 13(26): 11505-11517, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34180490

ABSTRACT

A new transmetallation approach is described for the synthesis of metal oxide nanocrystals (NCs). Typically, the synthesis of metal oxide NCs in oleyl alcohol is driven by metal-based esterification catalysis with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+-OH monomers. However, inclusion of 1-15 mol% of a group 13 cation (Al3+, Ga3+, or In3+) results in efficient synthesis of Cu2O NCs and exhibits size/morphology control based on the nature of M3+. Using a continuous-injection procedure where the copper precursor (Cu2+-oleate) and catalyst (M3+-oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+-OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+-OH monomers required for Cu2O condensation. Ga3+ is found to be the "goldilocks" catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+-OH and Cu+-oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate hydroxide ligands.

2.
Integr Cancer Ther ; 15(4): 535-541, 2016 12.
Article in English | MEDLINE | ID: mdl-26590123

ABSTRACT

The use of prior exercise training has shown promise in minimizing doxorubicin (DOX)-induced physical impairments. The purpose of this study was to compare changes in thymus mass, thymocyte (T-cell) number, and tissue peroxidation following chronic endurance exercise and DOX treatment in the rat. The thymus mass, number of viable T-cells, and levels of malondialdehyde and 4-hydroxyalkenals (MDA+4-HAE) were compared 3 days post-injection between rats assigned to the following treatment conditions: (a) 10 weeks of endurance training, followed by a saline injection 24 hours after the last training session (TM+SAL); (b) treadmill training as above, followed by a single, bolus 10-mg/kg injection of DOX (TM+10); (c) treadmill training with 12.5 mg/kg of DOX (TM+12.5); (d) sedentary (without exercise) and a saline injection (SED+SAL); (e) sedentary with 10 mg/kg of DOX (SED+10); and (f) sedentary with 12.5 mg/kg (SED+12.5). Thymic mass and T-cell numbers significantly decreased following DOX injections. TM rats exhibited significantly less lipid peroxidation compared with paired-dose SED groups. TM+10 did not significantly differ from SED+SAL in thymic levels of lipid peroxidation. We conclude that chronic endurance exercise decreases levels of lipid peroxidation in the thymus seen with acute DOX treatment.


Subject(s)
Doxorubicin/adverse effects , Drug-Related Side Effects and Adverse Reactions/physiopathology , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Thymocytes/drug effects , Thymus Gland/drug effects , Animals , Exercise Therapy/methods , Lipid Peroxidation/drug effects , Male , Rats , Rats, Sprague-Dawley , T-Lymphocytes/drug effects
3.
Xenobiotica ; 44(5): 472-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24138210

ABSTRACT

1. Doxorubicin (DOX) is a highly effective and commonly used anthracycline antibiotic used to treat cancer patients. The side effects of DOX are manifested in a more delayed manner in children and multidrug resistant proteins (MRPs) may factor into this phenomenon. MRPs are known to extrude DOX and may factor into the degree of cardiac DOX accumulation. 2. The purpose of this study was to examine age-related differences in muscle MRP expression and DOX accumulation. 3. Female Sprague-Dawley rats were randomly selected to receive a 15-mg DOX/kg body weight bolus injection (i.p.) at various ages. 4. Cardiac and extensor digitorum longus DOX accumulation was markedly increased as animals aged from 4 to 24 weeks. In contrast, no differences in soleus accumulation were observed. A significant age-related reduction in MRP-2 and MRP-7 expression was detected in cardiac and extensor digitorum longus tissues with no age differences in MRP-1 expression in any tissues analyzed. MRP-6 was not detected in any tissues. 5. These data suggest that aging is associated with increased DOX accumulation and an age-related decrease in MRP expression may be a factor.


Subject(s)
Doxorubicin/pharmacokinetics , Multidrug Resistance-Associated Proteins/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Age Factors , Animals , Female , Heart/drug effects , Heart/physiology , Muscle, Skeletal/drug effects , Rats , Rats, Sprague-Dawley , Tissue Distribution
4.
J. physiol. biochem ; 69(2): 177-187, jun. 2013.
Article in English | IBECS | ID: ibc-121966

ABSTRACT

Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients (AU)


Subject(s)
Animals , Rats , Doxorubicin/biosynthesis , Muscle, Skeletal , Heart , Muscle, Smooth , Drug Residues/analysis , Musculoskeletal System
5.
J Cardiovasc Pharmacol ; 62(4): 355-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23719093

ABSTRACT

Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide array of cancers. Its use is limited because of dose-dependent cardiovascular toxicity. Although exercise training has been shown to protect against DOX-induced cardiotoxicity, it is unclear as to whether exercise can attenuate DOX-induced vascular dysfunction. The purpose of this study was to determine if exercise training provides protection against the deleterious vascular effects of DOX treatment and if any changes in vascular function are related to the accumulation of DOX in vascular tissue. Male Sprague-Dawley rats remained sedentary (SED) or engaged in 14 weeks of voluntary wheel running (WR). After the 14-week period, animals received 15 mg DOX per kilogram of body mass or an equivalent volume of saline. Twenty-four hours after DOX/saline exposure, the aorta was isolated and was used to examine vascular function and aortic DOX accumulation. Aortic rings from WR + DOX animals contracted with significantly greater force and showed improved endothelium-independent relaxation when compared with rings from SED + DOX animals. In contrast, no significant differences in endothelium-dependent aortic function were noted between WR + DOX and SED + DOX. Furthermore, no significant differences in aortic DOX accumulation were observed between the DOX groups. These results suggest that chronic exercise attenuates vascular smooth muscle dysfunction associated with DOX treatment and seems to be independent of DOX accumulation in vascular tissue.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Doxorubicin/toxicity , Physical Conditioning, Animal , Vascular Diseases/prevention & control , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Doxorubicin/pharmacokinetics , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Male , Muscle, Smooth, Vascular/physiopathology , Rats , Rats, Sprague-Dawley , Running/physiology , Tissue Distribution , Vascular Diseases/chemically induced
6.
J Physiol Biochem ; 69(2): 177-87, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22890792

ABSTRACT

Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Muscle, Skeletal/drug effects , Muscle, Smooth/drug effects , Myocardium/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Doxorubicin/pharmacokinetics , Male , Models, Animal , Muscle, Skeletal/metabolism , Muscle, Smooth/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...