Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(12): 10306-10320, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38872300

ABSTRACT

Selective inhibition of the RGD (Arg-Gly-Asp) integrin αvß1 has been recently identified as an attractive therapeutic approach for the treatment of liver fibrosis given its function, target expression, and safety profile. Our identification of a non-RGD small molecule lead followed by focused, systematic changes to the core structure utilizing a crystal structure, in silico modeling, and a tractable synthetic approach resulted in the identification of a potent small molecule exhibiting a remarkable affinity for αvß1 relative to several other integrin isoforms measured. Azabenzimidazolone 25 demonstrated antifibrotic efficacy in an in vivo rat liver fibrosis model and represents a tool compound capable of further exploring the biological consequences of selective αvß1 inhibition.


Subject(s)
Drug Design , Receptors, Vitronectin , Animals , Rats , Humans , Receptors, Vitronectin/antagonists & inhibitors , Receptors, Vitronectin/metabolism , Structure-Activity Relationship , Liver Cirrhosis/drug therapy , Models, Molecular , Drug Discovery , Rats, Sprague-Dawley , Male , Crystallography, X-Ray , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis
2.
J Med Chem ; 67(6): 4376-4418, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38488755

ABSTRACT

In 2022, 23 new small molecule chemical entities were approved as drugs by the United States FDA, European Union EMA, Japan PMDA, and China NMPA. This review describes the synthetic approach demonstrated on largest scale for each new drug based on patent or primary literature. The synthetic routes highlight practical methods to construct molecules, sometimes on the manufacturing scale, to access the new drugs. Ten additional drugs approved in 2021 and one approved in 2020 are included that were not covered in the previous year's review.


Subject(s)
Drug Approval , United States , Japan , United States Food and Drug Administration , China
3.
J Med Chem ; 66(15): 10150-10201, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37528515

ABSTRACT

Each year, new drugs are introduced to the market, representing structures that have affinity for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and serve as potential leads for the design of future medicines. This annual review is part of a continuing series highlighting the most likely process-scale synthetic approaches to 35 NCEs that were first approved anywhere in the world during 2021.


Subject(s)
Drug Design , Humans , Pharmaceutical Preparations , Immunoconjugates/chemistry
4.
J Med Chem ; 65(14): 9607-9661, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35833579

ABSTRACT

New drugs introduced to the market are privileged structures that have affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates (ADCs), provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This Review is part of a continuing series presenting the most likely process-scale synthetic approaches to 44 new chemical entities approved for the first time anywhere in the world during 2020.


Subject(s)
Drug Design , Immunoconjugates , Humans
5.
J Med Chem ; 64(7): 3604-3657, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33783211

ABSTRACT

New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.


Subject(s)
Chemistry Techniques, Synthetic/methods , Organic Chemicals/chemical synthesis , Pharmaceutical Preparations/chemical synthesis , Animals , Humans
6.
Neurogastroenterol Motil ; 33(4): e14026, 2021 04.
Article in English | MEDLINE | ID: mdl-33185015

ABSTRACT

BACKGROUND: 5-HT4 receptor (5-HT4 R) agonists exert prokinetic actions in the GI tract, but non-selective actions and potential for stimulation of non-target 5-HT4 Rs have limited their use. Since 5-HT4 Rs are expressed in the colonic epithelium and their stimulation accelerates colonic propulsion in vitro, we tested whether luminally acting 5-HT4 R agonists promote intestinal motility. METHODS: Non-absorbed 5-HT4 R agonists, based on prucalopride and naronapride, were assessed for potency at the 5-HT4 R in vitro, and for tissue and serum distribution in vivo in mice. In vivo assessment of prokinetic potential included whole gut transit, colonic motility, fecal output, and fecal water content. Colonic motility was also studied ex vivo in mice treated in vivo. Immunofluorescence was used to evaluate receptor distribution in human intestinal mucosa. KEY RESULTS: Pharmacological screening demonstrated selectivity and potency of test agonists for 5-HT4 R. Bioavailability studies showed negligible serum detection. Gavage of agonists caused faster whole gut transit and colonic motility, increased fecal output, and elevated fecal water content. Prokinetic actions were blocked by a 5-HT4 R antagonist and were not detected in 5-HT4 R knockout mice. Agonist administration promoted motility in models of constipation. Evaluation of motility patterns ex vivo revealed enhanced contractility in the middle and distal colon. Immunoreactivity for 5-HT4 R is present in the epithelial layer of the human small and large intestines. CONCLUSIONS AND INFERENCES: These findings demonstrated that stimulation of epithelial 5-HT4 Rs can potentiate propulsive motility and support the concept that mucosal 5-HT4 Rs could represent a safe and effective therapeutic target for the treatment of constipation.


Subject(s)
Colon/physiology , Gastrointestinal Motility/physiology , Intestinal Mucosa/physiology , Receptors, Serotonin, 5-HT4/physiology , Serotonin 5-HT4 Receptor Agonists/pharmacology , Animals , CHO Cells , Colon/drug effects , Constipation/drug therapy , Constipation/physiopathology , Cricetinae , Cricetulus , Gastrointestinal Motility/drug effects , Humans , Intestinal Mucosa/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Serotonin 5-HT4 Receptor Agonists/therapeutic use
7.
Bioorg Med Chem Lett ; 27(8): 1709-1713, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28291695

ABSTRACT

Structure-based drug design is an iterative process that is an established means to accelerate lead optimization, and is most powerful when integrated with information from different sources. Herein is described the use of such methods in conjunction with deconstruction and re-optimization of a diverse series of ASK1 chemotypes along with high-throughput screening that lead to the identification of a novel series of efficient ASK1 inhibitors displaying robust MAP3K pathway inhibition.


Subject(s)
Drug Design , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , MAP Kinase Kinase Kinase 5/chemistry , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System/drug effects , Molecular Docking Simulation
8.
Bioorg Med Chem Lett ; 12(20): 2925-30, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12270176

ABSTRACT

Novel, potent, and highly selective classes of thrombin inhibitors were identified, which resulted from judicious combination of P4-aromatics and P2-P3-heterocyclic dipeptide surrogates with weakly basic (calcd pKa approximately non-basic-8.6) bicyclic P1-arginine mimics. The design, synthesis, and biological activity of achiral, non-covalent, orally bioavailable inhibitors NC1-NC44 featuring P1-indazoles, benzimidazoles, indoles, benzotriazoles, and aminobenzisoxazoles is disclosed.


Subject(s)
Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacology , Thrombin/antagonists & inhibitors , Animals , Area Under Curve , Biological Availability , Bridged Bicyclo Compounds/pharmacokinetics , Crystallography, X-Ray , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Indicators and Reagents , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Bioorg Med Chem Lett ; 12(8): 1203-8, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11934589

ABSTRACT

Investigations on P(2)-P(3)-heterocyclic dipeptide surrogates directed towards identification of an orally bioavailable thrombin inhibitor led us to pursue novel classes of achiral, non-covalent P(1)-arginine derivatives. The design, synthesis, and biological activity of inhibitors NC1-NC30 that feature three classes of monocyclic P(1)-arginine surrogates will be disclosed: (1) (hetero)aromatic amidines, amines and hydroxyamidines, (2) 2-aminopyrazines, and (3) 2-aminopyrimidines and 2-aminotetrahydropyrimidines.


Subject(s)
Antithrombins/chemistry , Antithrombins/pharmacology , Arginine/chemistry , Heterocyclic Compounds/chemistry , Animals , Antithrombins/chemical synthesis , Dogs , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 12(5): 743-8, 2002 Mar 11.
Article in English | MEDLINE | ID: mdl-11858993

ABSTRACT

Evolution of P(1)-argininal inhibitor prototypes led to a series of non-covalent P(3)-7-membered lactam inhibitors 1a-w, featuring novel peptidomimetic units that probe each of the S(1), S(2), and S(3) specificity pockets of thrombin. Rigid P(1)-arginine surrogates possessing a wide range of basicity (calcd pK(a)'s approximately neutral-14) were surveyed. The design, synthesis, and biological activity of these targets are presented.


Subject(s)
Antithrombins/chemical synthesis , Lactams/chemical synthesis , Animals , Antithrombins/pharmacokinetics , Antithrombins/pharmacology , Biological Availability , Blood Coagulation/drug effects , Dogs , Lactams/pharmacokinetics , Lactams/pharmacology , Molecular Structure , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...