Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 3: 21-28, 2016.
Article in English | MEDLINE | ID: mdl-26770886

ABSTRACT

Polychlorinated biphenyls (PCBs), industrial chemicals and persistent environmental pollutants, are found in rural and urban settings. Rodent studies have shown that exposure to PCB126, a dioxin-like PCB, causes a significant disruption of hepatic micronutrient homeostasis and an increase in metallothionein (MT), an antioxidant protein and metal carrier. A MT knockout mouse strain was used to assess metallothionein's role in micronutrient disruption and overall hepatotoxicity. Twenty four 129S male mice (12 wild type (WT) and 12 MT knockout (MTKO)) were placed on a purified diet (AIN-93G) for 3 weeks to achieve hepatic metal equilibrium. Mice were then given a single IP injection, of either vehicle or 150 umol/kg PCB126 in vehicle. The animals were sacrificed 2 weeks later and organs processed for analysis. Liver histology, hepatic lipids, gene expression, micronutrient and ROS status were investigated. Liver weights, liver lipids, ROS, and hepatocyte vacuolation were increased with PCB126 exposure along with AhR responsive genes. The MTKO animals had more severe histological changes in the liver and elevated liver lipids than their wild type counterparts. Hepatic and renal metals levels (Cu, Zn, Se and Mn) were mostly reduced by PCB126 treatment. Renal micronutrients were more affected by PCB126 treatment in the MTKO animals. This research suggests that MT may not be the sole/primary cause of the metal disruption caused by PCB126 exposure in mice, but may provide protection against overall hepatotoxicity.

2.
Vet Pathol ; 50(6): 1007-15, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23558974

ABSTRACT

Histopathologic scoring is a tool by which semiquantitative data can be obtained from tissues. Initially, a thorough understanding of the experimental design, study objectives, and methods is required for the pathologist to appropriately examine tissues and develop lesion scoring approaches. Many principles go into the development of a scoring system such as tissue examination, lesion identification, scoring definitions, and consistency in interpretation. Masking (aka "blinding") of the pathologist to experimental groups is often necessary to constrain bias, and multiple mechanisms are available. Development of a tissue scoring system requires appreciation of the attributes and limitations of the data (eg, nominal, ordinal, interval, and ratio data) to be evaluated. Incidence, ordinal, and rank methods of tissue scoring are demonstrated along with key principles for statistical analyses and reporting. Validation of a scoring system occurs through 2 principal measures: (1) validation of repeatability and (2) validation of tissue pathobiology. Understanding key principles of tissue scoring can help in the development and/or optimization of scoring systems so as to consistently yield meaningful and valid scoring data.


Subject(s)
Pathology/methods , Research Design/standards , Animals , Disease Models, Animal , Severity of Illness Index , Validation Studies as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...