Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37939085

ABSTRACT

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Subject(s)
Neurons , Pyramidal Cells , Animals , Neurons/physiology , Pyramidal Cells/physiology , Dendrites/physiology , Thalamus/physiology , Mammals
2.
PLoS Comput Biol ; 19(7): e1011212, 2023 07.
Article in English | MEDLINE | ID: mdl-37399220

ABSTRACT

The electrical and computational properties of neurons in our brains are determined by a rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However, the precise reason for this inherent complexity remains unknown, given that simpler models with fewer ion channels are also able to functionally reproduce the behaviour of some neurons. Here, we stochastically varied the ion channel densities of a biophysically detailed dentate gyrus granule cell model to produce a large population of putative granule cells, comparing those with all 15 original ion channels to their reduced but functional counterparts containing only 5 ion channels. Strikingly, valid parameter combinations in the full models were dramatically more frequent at ~6% vs. ~1% in the simpler model. The full models were also more stable in the face of perturbations to channel expression levels. Scaling up the numbers of ion channels artificially in the reduced models recovered these advantages confirming the key contribution of the actual number of ion channel types. We conclude that the diversity of ion channels gives a neuron greater flexibility and robustness to achieve a target excitability.


Subject(s)
Models, Neurological , Neurons , Action Potentials/physiology , Neurons/physiology , Ion Channels/physiology
3.
PLoS Biol ; 20(6): e3001651, 2022 06.
Article in English | MEDLINE | ID: mdl-35687582

ABSTRACT

Rapid advances in neuroscience have provided remarkable breakthroughs in understanding the brain on many fronts. Although promising, the role of these advancements in solving the problem of consciousness is still unclear. Based on technologies conceivably within the grasp of modern neuroscience, we discuss a thought experiment in which neural activity, in the form of action potentials, is initially recorded from all the neurons in a participant's brain during a conscious experience and then played back into the same neurons. We consider whether this artificial replay can reconstitute a conscious experience. The possible outcomes of this experiment unravel hidden costs and pitfalls in understanding consciousness from the neurosciences' perspective and challenge the conventional wisdom that causally links action potentials and consciousness.


Subject(s)
Consciousness , Neurosciences , Brain/physiology , Consciousness/physiology , Humans , Neurons/physiology
4.
Neuroscience ; 489: 15-33, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35182699

ABSTRACT

Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare themin vivoversusin vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.


Subject(s)
Neocortex , Pyramidal Cells , Action Potentials/physiology , Animals , Dendrites/physiology , Mammals , Neocortex/physiology , Neurons , Pyramidal Cells/physiology
5.
Sci Rep ; 11(1): 15910, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354118

ABSTRACT

The burst coding hypothesis posits that the occurrence of sudden high-frequency patterns of action potentials constitutes a salient syllable of the neural code. Many neurons, however, do not produce clearly demarcated bursts, an observation invoked to rule out the pervasiveness of this coding scheme across brain areas and cell types. Here we ask how detrimental ambiguous spike patterns, those that are neither clearly bursts nor isolated spikes, are for neuronal information transfer. We addressed this question using information theory and computational simulations. By quantifying how information transmission depends on firing statistics, we found that the information transmitted is not strongly influenced by the presence of clearly demarcated modes in the interspike interval distribution, a feature often used to identify the presence of burst coding. Instead, we found that neurons having unimodal interval distributions were still able to ascribe different meanings to bursts and isolated spikes. In this regime, information transmission depends on dynamical properties of the synapses as well as the length and relative frequency of bursts. Furthermore, we found that common metrics used to quantify burstiness were unable to predict the degree with which bursts could be used to carry information. Our results provide guiding principles for the implementation of coding strategies based on spike-timing patterns, and show that even unimodal firing statistics can be consistent with a bivariate neural code.

6.
Science ; 367(6473): 83-87, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31896716

ABSTRACT

The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs-a computation conventionally thought to require multilayered networks.


Subject(s)
Action Potentials , Dendrites/physiology , Neocortex/physiology , Pyramidal Cells/physiology , Adolescent , Adult , Aged , Calcium/physiology , Female , Humans , Male , Middle Aged , Neocortex/cytology , Young Adult
7.
Neuron ; 96(4): 730-735, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29144972

ABSTRACT

Science is ideally suited to connect people from different cultures and thereby foster mutual understanding. To promote international life science collaboration, we have launched "The Science Bridge" initiative. Our current project focuses on partnership between Western and Middle Eastern neuroscience communities.


Subject(s)
International Cooperation , Neurosciences/history , Europe , History, 15th Century , History, 21st Century , History, Ancient , History, Medieval , Humans , Middle East
8.
Cell ; 163(2): 456-92, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26451489

ABSTRACT

We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP: VIDEO ABSTRACT.


Subject(s)
Computer Simulation , Models, Neurological , Neocortex/cytology , Neurons/classification , Neurons/cytology , Somatosensory Cortex/cytology , Algorithms , Animals , Hindlimb/innervation , Male , Neocortex/physiology , Nerve Net , Neurons/physiology , Rats , Rats, Wistar , Somatosensory Cortex/physiology
9.
Cereb Cortex ; 25(4): 849-58, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24165834

ABSTRACT

This computational study integrates anatomical and physiological data to assess the functional role of the lateral excitatory connections between layer 2/3 (L2/3) pyramidal cells (PCs) in shaping their response during early stages of intracortical processing of a whisker deflection (WD). Based on in vivo and in vitro recordings, and 3D reconstructions of connected pairs of L2/3 PCs, our model predicts that: 1) AMPAR and NMDAR conductances/synapse are 0.52 ± 0.24 and 0.40 ± 0.34 nS, respectively; 2) following WD, connection between L2/3 PCs induces a composite EPSPs of 7.6 ± 1.7 mV, well below the threshold for action potential (AP) initiation; 3) together with the excitatory feedforward L4-to-L2/3 connection, WD evoked a composite EPSP of 16.3 ± 3.5 mV and a probability of 0.01 to generate an AP. When considering the variability in L4 spiny neurons responsiveness, it increased to 17.8 ± 11.2 mV; this 3-fold increase in the SD yielded AP probability of 0.35; 4) the interaction between L4-to-L2/3 and L2/3-to-L2/3 inputs is highly nonlinear; 5) L2/3 dendritic morphology significantly affects L2/3 PCs responsiveness. We conclude that early stages of intracortical signaling of WD are dominated by a combination of feedforward L4-L2/3 and L2/3-L2/3 lateral connections.


Subject(s)
Cerebral Cortex/anatomy & histology , Cerebral Cortex/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Vibrissae/physiology , Action Potentials/physiology , Animals , Computer Simulation , Excitatory Postsynaptic Potentials/physiology , Imaging, Three-Dimensional , Models, Neurological , Rats , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology
10.
Neuron ; 75(2): 330-41, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22841317

ABSTRACT

Synaptic inhibition plays a key role in shaping the dynamics of neuronal networks and selecting cell assemblies. Typically, an inhibitory axon contacts a particular dendritic subdomain of its target neuron, where it often makes 10-20 synapses, sometimes on very distal branches. The functional implications of such a connectivity pattern are not well understood. Our experimentally based theoretical study highlights several new and counterintuitive principles for dendritic inhibition. We show that distal "off-path" rather than proximal "on-path" inhibition effectively dampens proximal excitable dendritic "hotspots," thus powerfully controlling the neuron's output. Additionally, with multiple synaptic contacts, inhibition operates globally, spreading centripetally hundreds of micrometers from the inhibitory synapses. Consequently, inhibition in regions lacking inhibitory synapses may exceed that at the synaptic sites themselves. These results offer new insights into the synergetic effect of dendritic inhibition in controlling dendritic excitability and plasticity and in dynamically molding functional dendritic subdomains and their output.


Subject(s)
Dendrites/physiology , Models, Neurological , Neural Inhibition/physiology , Neurons/physiology , Synapses/physiology , Computer Simulation
11.
Front Neural Circuits ; 6: 118, 2012.
Article in English | MEDLINE | ID: mdl-23565076

ABSTRACT

Using computational tools we explored the impact of local synaptic inhibition on the plasticity of excitatory synapses in dendrites. The latter critically depends on the intracellular concentration of calcium, which in turn, depends on membrane potential and thus on inhibitory activity in particular dendritic compartments. We systematically characterized the dependence of excitatory synaptic plasticity on dendritic morphology, loci and strength, as well as on the spatial distribution of inhibitory synapses and on the level of excitatory activity. Plasticity of excitatory synapses may attain three states: "protected" (unchanged), potentiated (long-term potentiation; LTP), or depressed (long-term depression; LTD). The transition between these three plasticity states could be finely tuned by synaptic inhibition with high spatial resolution. Strategic placement of inhibition could give rise to the co-existence of all three states over short dendritic branches. We compared the plasticity effect of the innervation patterns typical of different inhibitory subclasses-Chandelier, Basket, Martinotti, and Double Bouquet-in a detailed model of a layer 5 pyramidal cell. Our study suggests that dendritic inhibition plays a key role in shaping and fine-tuning excitatory synaptic plasticity in dendrites.

12.
J Neurophysiol ; 105(3): 989-98, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21123659

ABSTRACT

Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na(+) spikes are generated near the soma, and Ca(2+) spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. The present computational study explores the implications of having two spike-timing-dependent plasticity (STDP) signals in a neuron, each with its respective regional population of synaptic "pupils." In a detailed model of an L5 pyramidal neuron, competition emerges between synapses belonging to different regions, on top of the competition among synapses within each region, which characterizes the STDP mechanism. Interregional competition results in strengthening of one group of synapses, which ultimately dominates cell firing, at the expense of weakening synapses in other regions. This novel type of competition is inherent to dendrites with multiple regional signals for Hebbian plasticity. Surprisingly, such interregional competition exists even in a simplified model of two identical coupled compartments. We find that in a model of an L5 pyramidal cell, the different synaptic subpopulations "live in peace" when the induction of Ca(2+) spikes requires the back-propagating action potential (BPAP). Thus we suggest a new key role for the BPAP, to maintain the balance between synaptic efficacies throughout the dendritic tree, thereby sustaining the functional integrity of the entire neuron.


Subject(s)
Action Potentials/physiology , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Animals , Computer Simulation , Humans
13.
J Neurophysiol ; 101(6): 3226-34, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19357339

ABSTRACT

We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing-dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, g(peak), of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially "save" distal synapses from "dying out." Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (g(max)) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites.


Subject(s)
Action Potentials/physiology , Dendrites/physiology , Neuronal Plasticity/physiology , Neurons/cytology , Synapses/physiology , Animals , Computer Simulation , Models, Neurological , Neurons/physiology , Time Factors
14.
Front Neurosci ; 1(1): 7-18, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18982116

ABSTRACT

We present a novel framework for automatically constraining parameters of compartmental models of neurons, given a large set of experimentally measured responses of these neurons. In experiments, intrinsic noise gives rise to a large variability (e.g., in firing pattern) in the voltage responses to repetitions of the exact same input. Thus, the common approach of fitting models by attempting to perfectly replicate, point by point, a single chosen trace out of the spectrum of variable responses does not seem to do justice to the data. In addition, finding a single error function that faithfully characterizes the distance between two spiking traces is not a trivial pursuit. To address these issues, one can adopt a multiple objective optimization approach that allows the use of several error functions jointly. When more than one error function is available, the comparison between experimental voltage traces and model response can be performed on the basis of individual features of interest (e.g., spike rate, spike width). Each feature can be compared between model and experimental mean, in units of its experimental variability, thereby incorporating into the fitting this variability. We demonstrate the success of this approach, when used in conjunction with genetic algorithm optimization, in generating an excellent fit between model behavior and the firing pattern of two distinct electrical classes of cortical interneurons, accommodating and fast-spiking. We argue that the multiple, diverse models generated by this method could serve as the building blocks for the realistic simulation of large neuronal networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...