Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 154: 105-112, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36228329

ABSTRACT

Anaerobic digestion (AD) of sewage sludge shows low carbon conversion efficiency (CCE) due to the poor biodegradability of sewage sludge. The lack of digestibility is specifically linked to the waste-activated sludge (WAS) making up the majority of sewage sludge along with a smaller portion of primary sludge, depending on the wastewater treatment plant configuration. In this study, we examine the Advanced Wet Oxidation & Steam Explosion process (AWOEx) for improving the CCE of digested sewage sludge (DSS) by thermophilic AD. The effect of the pretreatment temperature in the range between 160 and 185 °C at a fixed residence time of 20 min with and without oxygen added at a dosage of 5 % of the organics present was tested. Methane yield improved by 97.92 % to 183.91 ± 4.93 mL/g vS over the untreated DSS (control), whose methane yield was 92.92 ± 9.07 mL/g vS We have demonstrated for the first time that 84 % of the organics in sewage sludge can successfully be transformed into biogas following AWOEx pretreatment, which can contribute significantly to the circular economy instead of greenhouse gas emissions from landfilling.

2.
Biosensors (Basel) ; 11(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669223

ABSTRACT

Tendons are collagenous musculoskeletal tissues that connect muscles to bones and transfer the forces necessary for movement. Tendons are susceptible to injury and heal poorly, with long-term loss of function. Mesenchymal stem cell (MSC)-based therapies are a promising approach for treating tendon injuries but are challenged by the difficulties of controlling stem cell fate and of generating homogenous populations of stem cells optimized for tenogenesis (differentiation toward tendon). To address this issue, we aim to explore methods that can be used to identify and ultimately separate tenogenically differentiated MSCs from non-tenogenically differentiated MSCs. In this study, baseline and tenogenically differentiating murine MSCs were characterized for dielectric properties (conductivity and permittivity) of their outer membrane and cytoplasm using a dielectrophoretic (DEP) crossover technique. Experimental results showed that unique dielectric properties distinguished tenogenically differentiating MSCs from controls after three days of tenogenic induction. A single shell model was used to quantify the dielectric properties and determine membrane and cytoplasm conductivity and permittivity. Together, cell responses at the crossover frequency, cell morphology, and shell models showed that changes potentially indicative of early tenogenesis could be detected in the dielectric properties of MSCs as early as three days into differentiation. Differences in dielectric properties with tenogenesis indicate that the DEP-based label-free separation of tenogenically differentiating cells is possible and avoids the complications of current label-dependent flow cytometry-based separation techniques. Overall, this work illustrates the potential of DEP to generate homogeneous populations of differentiated stem cells for applications in tissue engineering and regenerative medicine.


Subject(s)
Mesenchymal Stem Cells , Tendons , Tissue Engineering , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Signal Transduction
3.
Electrophoresis ; 42(5): 656-666, 2021 03.
Article in English | MEDLINE | ID: mdl-33215725

ABSTRACT

Rare earth elements (REEs) are widely used across different industries due to their exceptional magnetic and electrical properties. In this work, Cupriavidus necator is characterized using dielectrophoretic ultra-high-frequency measurements, typically in MHz range to quantify the properties of cytoplasm in C. necator for its metal uptake/bioaccumulation capacity. Cupriavidus necator, a Gram-negative bacteria strain is exposed to REEs like europium, samarium, and neodymium in this study. Dielectrophoretic crossover frequency experiments were performed on the native C. necator species pre- and post-exposure to the REEs at MHz frequency range. The net conductivity of native C. necator, Cupriavidus europium, Cupriavidus samarium, and Cupriavidus neodymium are 15.95 ± 0.029 µS/cm, 16.15 ± 0.028 µS/cm, 16.05 ± 0.029 µS/cm, 15.61 ± 0.005 µS/cm respectively. The estimated properties of the membrane published by our group are used to develop a microfluidic sorter by modeling and simulation to separate REE absorbed C. necator from the unabsorbed native C. necator species using COMSOL Multiphysics commercial software package v5.5.


Subject(s)
Cupriavidus necator/metabolism , Electrophoresis/methods , Metals, Rare Earth , Bioaccumulation , Computer Simulation , Cupriavidus necator/chemistry , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Models, Chemical
4.
Anal Chim Acta ; 1129: 150-157, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32891385

ABSTRACT

This work presents the dielectric characterization of rare earth elements (REEs) biosorption by Cupriavidus necator using dielectrophoretic crossover frequency measurements. Traditional means of characterizing biomass for biosorption is limited and time consuming. In this research we are presenting, for the first time, an electrokinetic method termed as dielectrophoresis (DEP) for the characterization of biosorption (uptake) of rare earth elements (REEs) by gram negative bacteria - Cupriavidus necator. To characterize, a 3mm-diameter point and planar microwell device platform is used to measure the DEP crossover frequency that yields the dielectric properties of the targeted biosorbents. Quantified dielectric properties of native Cupriavidus necator (REE-) and those exposed to rare earth elements (REE+): europium, neodymium, and samarium revealed a substantial change in the surface characteristics of the Cupriavidus necator after exposure to the REE solution. The response of C. necator to changes in REE exposure is substantially different for europium but similar between neodymium and samarium. Statistically both the REE+ and REE- groups dielectric signatures were significantly different proving that the REEs were absorbed by the bacteria. This research will revolutionize and impact the researchers and industrialists in the field of biosorption seeking for economical, greener, and sustainable means to recover REEs.


Subject(s)
Cupriavidus necator , Bacteria , Biomass , Europium
5.
Micromachines (Basel) ; 11(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218322

ABSTRACT

The dielectrophoretic separation of infiltrating ductal adenocarcinoma cells (ADCs) from isolated peripheral blood mononuclear cells (PBMCs) in a ~1.4 mm long Y-shaped microfluidic channel with semi-circular insulating constrictions is numerically investigated. In this work, ADCs (breast cancer cells) and PBMCs' electrophysiological properties were iteratively extracted through the fitting of a single-shell model with the frequency-conductivity data obtained from AC microwell experiments. In the numerical computation, the gradient of the electric field required to generate the necessary dielectrophoretic force within the constriction zone was provided through the application of electric potential across the whole fluidic channel. By adjusting the difference in potentials between the global inlet and outlet of the fluidic device, the minimum (effective) potential difference with the optimum particle transmission probability for ADCs was found. The radius of the semi-circular constrictions at which the effective potential difference was swept to obtain the optimum constriction size was also obtained. Independent particle discretization analysis was also conducted to underscore the accuracy of the numerical solution. The numerical results, which were obtained by the integration of fluid flow, electric current, and particle tracing module in COMSOL v5.3, reveal that PBMCs can be maximally separated from ADCs using a DC power source of 50 V. The article also discusses recirculation or wake formation behavior at high DC voltages (>100 V) even when sorting of cells are achieved. This result is the first step towards the production of a supplementary or confirmatory test device to detect early breast cancer non-invasively.

6.
Biophys Rev (Melville) ; 1(1): 011304, 2020 Dec.
Article in English | MEDLINE | ID: mdl-38505626

ABSTRACT

Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...