Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 182: 109071, 2020 03.
Article in English | MEDLINE | ID: mdl-31887467

ABSTRACT

The current experimental study presents particulate emissions from 30 Euro 1-4 L-category vehicles (i.e. 2-, 3- and 4-wheelers such as mopeds, motorcycles, quads and minicars, registered in Europe between 2009 and 2016) tested on a chassis dynamometer. The objectives were to identify those sub-categories with high emissions, to assess whether the measures prescribed in the Euro 5 legislation will effectively control particulate emissions and finally to investigate the need for additional measures. The results showed that 2-stroke (2S) mopeds and diesel minicars comprised the vehicles with the highest particulate mass (PM) and solid particle number above 23 nm (SPN23) emissions (up to 64 mg/km and 4.5 × 1013 km-1, respectively). It is uncertain whether the installation of diesel particulate filters (DPF) is a cost-effective measure for diesel mini-cars in order to comply with Euro 5 standard, while advanced emission controls will be required for 2S mopeds, if such vehicles remain competitive for Euro 5. Regarding 4-stroke mopeds, motorcycles and quads, PM emissions were one order of magnitude lower than 2S ones and already below the Euro 5 limit. Nevertheless, SPN23 emissions from these sub-categories were up to 5 times higher than the Euro 6 passenger cars limit (6 × 1011 km-1). Even recent Euro 4 motorcycles exceeded this limit by up to 3 times. These results indicate that L-category vehicles are a significant contributor to vehicular particulate emissions and should be further monitored during and after the introduction of the Euro 5 step. Moreover, including SPN in the range 10-23 nm increases emission levels by up to 2.4 times compared to SPN23, while volatile and semi-volatile particle numbers were even higher. Finally, cold engine operation was found to be a significant contributor on SPN23 emissions, especially for vehicles with lower overall emission levels. These results indicate that a specific particle number limit may be required for L-category to align emissions with passenger cars.


Subject(s)
Air Pollutants , Particulate Matter , Vehicle Emissions , Europe , Gasoline , Motor Vehicles , Vehicle Emissions/analysis
2.
Anal Chim Acta ; 717: 28-38, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22304813

ABSTRACT

Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.

3.
Sci Total Environ ; 408(21): 5106-16, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20692024

ABSTRACT

European regulation for Euro 5/6 light duty emissions introduced the measurement of non-volatile particles with diameter >23 nm. The volatile phase is removed by using a heated dilution stage (150 degrees C) and a heated tube (at 300-400 degrees C). We investigated experimentally the removal efficiency for volatile species of the specific protocol by conducting measurements with two Euro 3 diesel light duty vehicles, a Euro 2 moped, and a Euro III heavy duty vehicle with the system's heaters on and off. The particle number distributions were measured with a Scanning Mobility Particle Sizer (SMPS) and a Fast Mobility Particle Sizer (FMPS). An Aerosol Mass Spectrometer (AMS) was used to identify the non-refractory chemical composition of the particles. A Multi-Angle Absorption Photometer (MAAP) was used to measure the black carbon concentration. The results showed that the condensed material in the accumulation mode (defined here as particles in the diameter range of approximately 50-500 nm) was removed with an efficiency of 50-90%. The (volatile) nucleation mode was also completely evaporated or was decreased to sizes <23 nm; thus these particles wouldn't be counted from the particle counter, indicating the robustness of the protocol.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Air Pollution/prevention & control , Environmental Monitoring/methods , Environmental Restoration and Remediation/instrumentation , Particulate Matter/analysis , Vehicle Emissions/prevention & control , Aerosols/chemistry , Air Pollutants/chemistry , Air Pollution/legislation & jurisprudence , Environment , Environmental Restoration and Remediation/legislation & jurisprudence , Government Regulation , Particulate Matter/chemistry , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...