Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 14(5): e14797, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35373464

ABSTRACT

Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock-in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV-based strategy carrying intein-split-dCas9 in combination with activators (AAV-dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single-cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6-OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV-dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.


Subject(s)
Parkinson Disease , Animals , Astrocytes , Corpus Striatum , Dopamine , Dopaminergic Neurons , GABAergic Neurons , Mice , Parkinson Disease/genetics , Parkinson Disease/therapy
3.
Cell Stem Cell ; 28(3): 524-534.e7, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33202244

ABSTRACT

Astrocyte-to-neuron conversion is a promising avenue for neuronal replacement therapy. Neurons are particularly dependent on mitochondrial function, but how well mitochondria adapt to the new fate is unknown. Here, we determined the comprehensive mitochondrial proteome of cortical astrocytes and neurons, identifying about 150 significantly enriched mitochondrial proteins for each cell type, including transporters, metabolic enzymes, and cell-type-specific antioxidants. Monitoring their transition during reprogramming revealed late and only partial adaptation to the neuronal identity. Early dCas9-mediated activation of genes encoding mitochondrial proteins significantly improved conversion efficiency, particularly for neuron-enriched but not astrocyte-enriched antioxidant proteins. For example, Sod1 not only improves the survival of the converted neurons but also elicits a faster conversion pace, indicating that mitochondrial proteins act as enablers and drivers in this process. Transcriptional engineering of mitochondrial proteins with other functions improved reprogramming as well, demonstrating a broader role of mitochondrial proteins during fate conversion.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Mitochondrial Proteins , Astrocytes , Cells, Cultured , Mitochondrial Proteins/genetics , Neuroglia , Neurons
4.
J Vis Exp ; (142)2018 12 26.
Article in English | MEDLINE | ID: mdl-30638198

ABSTRACT

The bacterial CRISPR/Cas9 system has substantially increased methodological options for life scientists. Due to its utilization, genetic and genomic engineering became applicable to a large range of systems. Moreover, many transcriptional and epigenomic engineering approaches are now generally feasible for the first time. One reason for the broad applicability of CRISPR lies in its bipartite nature. Small gRNAs determine the genomic targets of the complex, variants of the protein Cas9, and the local molecular consequences. However, many CRISPR approaches depend on the simultaneous delivery of multiple gRNAs into individual cells. Here, we present a customizable protocol for string assembly gRNA cloning (STAgR), a method that allows the simple, fast and efficient generation of multiplexed gRNA expression vectors in a single cloning step. STAgR is cost-effective, since (in this protocol) the individual targeting sequences are introduced by short overhang primers while the long DNA templates of the gRNA expression cassettes can be re-used multiple times. Moreover, STAgR allows single step incorporation of a large number of gRNAs, as well as combinations of different gRNA variants, vectors and promoters.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , RNA, Guide, Kinetoplastida/genetics , Cloning, Molecular/methods , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...