Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 361(6400)2018 07 27.
Article in English | MEDLINE | ID: mdl-30049852

ABSTRACT

Farr and Mandel reanalyze our data, finding initial mass function slopes for high-mass stars in 30 Doradus that agree with our results. However, their reanalysis appears to underpredict the observed number of massive stars. Their technique results in more precise slopes than in our work, strengthening our conclusion that there is an excess of massive stars (>30 solar masses) in 30 Doradus.


Subject(s)
Extraterrestrial Environment , Stars, Celestial , Time
2.
Proc Math Phys Eng Sci ; 474(2210): 20170616, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29507511

ABSTRACT

We discuss some of the key open questions regarding the formation and evolution of globular clusters (GCs) during galaxy formation and assembly within a cosmological framework. The current state of the art for both observations and simulations is described, and we briefly mention directions for future research. The oldest GCs have ages greater than or equal to 12.5 Gyr and formed around the time of reionization. Resolved colour-magnitude diagrams of Milky Way GCs and direct imaging of lensed proto-GCs at z∼6 with the James Webb Space Telescope (JWST) promise further insight. GCs are known to host multiple populations of stars with variations in their chemical abundances. Recently, such multiple populations have been detected in ∼2 Gyr old compact, massive star clusters. This suggests a common, single pathway for the formation of GCs at high and low redshift. The shape of the initial mass function for GCs remains unknown; however, for massive galaxies a power-law mass function is favoured. Significant progress has been made recently modelling GC formation in the context of galaxy formation, with success in reproducing many of the observed GC-galaxy scaling relations.

3.
Phys Med Biol ; 47(11): 1853-67, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12108771

ABSTRACT

Pinhole collimation can provide both higher sensitivity and resolution than parallel hole collimation when used to image small objects. When objects are placed close to the pinhole, small pinhole diameters combined with high-magnification pinhole geometries yield ultra high resolution images. With Monte Carlo (MC) calculations it is possible to simulate accurately a wide range of features of pinhole imaging. The aim of the present work is to accelerate MC simulations of pinhole SPECT projections. To achieve speed-up, forced detection (FD), a commonly used acceleration technique, is replaced by a kernel-based forced detection (KFD) step. In KFD, instead of tracing individual photons from the source or last scatter position to the detector, a position dependent kernel (point spread function (PSF)) is projected on the detector. The PSFs for channel and knife edge pinhole apertures model the penetration effects through the aperture material. For simulations, the PSFs are pre-calculated and stored in tables. The speed-up and accuracy achieved by using KFD were validated by means of digital phantoms. MC simulations with FD and with KFD converge to almost identical images. However, KFD converges to an equal image noise level one to four orders of magnitude faster than FD, depending on the number of photons simulated. A simulator accelerated by KFD could serve as a practical tool to improve iterative image reconstruction.


Subject(s)
Radiometry/methods , Tomography, Emission-Computed, Single-Photon/methods , Monte Carlo Method , Photons , Reproducibility of Results , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...