Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 6: 111-123, 2015.
Article in English | MEDLINE | ID: mdl-25671156

ABSTRACT

(51)Cr-labeled, superparamagnetic, iron oxide nanoparticles ((51)Cr-SPIOs) and (65)Zn-labeled CdSe/CdS/ZnS-quantum dots ((65)Zn-Qdots) were prepared using an easy, on demand, exchange-labeling technique and their particokinetic parameters were studied in mice after intravenous injection. The results indicate that the application of these heterologous isotopes can be used to successfully mark the nanoparticles during initial distribution and organ uptake, although the (65)Zn-label appeared not to be fully stable. As the degradation of the nanoparticles takes place, the individual transport mechanisms for the different isotopes must be carefully taken into account. Although this variation in transport paths can bring new insights with regard to the respective trace element homeostasis, it can also limit the relevance of such trace material-based approaches in nanobioscience. By monitoring (51)Cr-SPIOs after oral gavage, the gastrointestinal non-absorption of intact SPIOs in a hydrophilic or lipophilic surrounding was measured in mice with such high sensitivity for the first time. After intravenous injection, polymer-coated, (65)Zn-Qdots were mainly taken up by the liver and spleen, which was different from that of ionic (65)ZnCl2. Following the label for 4 weeks, an indication of substantial degradation of the nanoparticles and the release of the label into the Zn pool was observed. Confocal microscopy of rat liver cryosections (prepared 2 h after intravenous injection of polymer-coated Qdots) revealed a colocalization with markers for Kupffer cells and liver sinusoidal endothelial cells (LSEC), but not with hepatocytes. In J774 macrophages, fluorescent Qdots were found colocalized with lysosomal markers. After 24 h, no signs of degradation could be detected. However, after 12 weeks, no fluorescent nanoparticles could be detected in the liver cryosections, which would confirm our (65)Zn data showing a substantial degradation of the polymer-coated CdSe/CdS/ZnS-Qdots in the liver.

2.
Beilstein J Nanotechnol ; 5: 1432-1440, 2014.
Article in English | MEDLINE | ID: mdl-25247125

ABSTRACT

Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene) (PMAOD). The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr (-/-) as well as Apoe (-/-) mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα) or chemokine (C-X-C motif) ligand 10 (Cxcl10) indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

3.
ACS Nano ; 6(8): 7318-25, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22793497

ABSTRACT

A simple, fast, efficient, and widely applicable method to radiolabel the cores of monodisperse superparamagnetic iron oxide nanoparticles (SPIOs) with (59)Fe was developed. These cores can be used as precursors for a variety of functionalized nanodevices. A quality control using filtration techniques, size-exclusion chromatography, chemical degradation methods, transmission electron microscopy, and magnetic resonance imaging showed that the nanoparticles were stably labeled with (59)Fe. Furthermore, the particle structure and the magnetic properties of the SPIOs were unchanged. In a second approach, monodisperse SPIOs stabilized with (14)C-oleic acid were synthesized, and the stability of this shell labeling was studied. In proof of principle experiments, the (59)Fe-SPIOs coated with different shells to make them water-soluble were used to evaluate and compare in vivo pharmacokinetic parameters such as blood half-life. It could also be shown that our radiolabeled SPIOs embedded in recombinant lipoproteins can be used to quantify physiological processes in closer detail than hitherto possible. In vitro and in vivo experiments showed that the (59)Fe label is stable enough to be applied in vivo, whereas the (14)C label is rapidly removed from the iron core and is not adequate for in vivo studies. To obtain meaningful results in in vivo experiments, only (59)Fe-labeled SPIOs should be used.


Subject(s)
Dextrans/chemistry , Iron Radioisotopes , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/chemistry , Whole Body Imaging/methods , Animals , Contrast Media , Iron Radioisotopes/chemistry , Mice , Mice, Inbred BALB C , Organ Specificity , Radiopharmaceuticals , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...