Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 87: 83-89, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28065380

ABSTRACT

OBJECTIVE: To assess the impact of iterative model reconstruction (IMR) on calcified plaque quantification as compared to filtered back projection reconstruction (FBP) and hybrid iterative reconstruction (HIR) in coronary computed tomography angiography (CTA). METHODS: Raw image data of 52 patients who underwent 256-slice CTA were reconstructed with IMR, HIR and FBP. We evaluated qualitative, quantitative image quality parameters and quantified calcified and partially calcified plaque volumes using automated software. RESULTS: Overall qualitative image quality significantly improved with HIR as compared to FBP, and further improved with IMR (p<0.01 all). Contrast-to-noise ratios were improved with IMR, compared to HIR and FBP (51.0 [43.5-59.9], 20.3 [16.2-25.9] and 14.0 [11.2-17.7], respectively, all p<0.01) Overall plaque volumes were lowest with IMR and highest with FBP (121.7 [79.3-168.4], 138.7 [90.6-191.7], 147.0 [100.7-183.6]). Similarly, calcified volumes (>130 HU) were decreased with IMR as compared to HIR and FBP (105.9 [62.1-144.6], 110.2 [63.8-166.6], 115.9 [81.7-164.2], respectively, p<0.05 all). High-attenuation non-calcified volumes (90-129 HU) yielded similar values with FBP and HIR (p=0.81), however it was lower with IMR (p < 0.05 both). Intermediate- (30-89 HU) and low-attenuation (<30 HU) non-calcified volumes showed no significant difference (p=0.22 and p=0.67, respectively). CONCLUSIONS: IMR improves image quality of coronary CTA and decreases calcified plaque volumes.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Plaque, Atherosclerotic/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Aged , Algorithms , Female , Humans , Male , Middle Aged , Radiation Dosage , Reproducibility of Results , Tomography, X-Ray Computed/methods
2.
PeerJ ; 4: e1883, 2016.
Article in English | MEDLINE | ID: mdl-27069813

ABSTRACT

Purpose. The purpose of this study was to evaluate the technical and diagnostic performance of sub-milliSievert ultralow-dose (ULD) CT colonograpy (CTC) in the detection of colonic and extracolonic lesions. Materials and Methods. CTC with standard dose (SD) and ULD acquisitions of 64 matched patients, half of them with colonic findings, were reconstructed with filtered back projection (FBP), hybrid (HIR) and iterative model reconstruction techniques (IMR). Image noise in six colonic segments, in the left psoas muscle and aorta were measured. Image quality of the left adrenal gland and of the colon in the endoscopic and 2D view was rated on a five point Likert scale by two observers, who also completed the reading of CTC for colonic and extracolonic findings. Results. The mean radiation dose estimate was 4.1 ± 1.4 mSv for SD and 0.86 ± 0.17 mSv for ULD for both positions (p < 0.0001). In ULD-IMR, SD-IMR and SD-HIR, the endoluminal noise was decreased in all colonic segments compared to SD-FBP (p < 0.001). There were 27 small (6-9 mm) and 17 large (≥10 mm) colonic lesions that were classified as sessile polyps (n = 38), flat lesions (n = 3), or as a mass (n = 3). Per patient sensitivity and specificity were 0.82 and 0.93 for ULD-FBP, 0.97 and 0.97 for ULD-HIR, 0.97 and 1.0 for ULD-IMR. Per polyp sensitivity was 0.84 for ULD-FBP, 0.98 for ULD-HIR, 0.98 for ULD-IMR. Significantly less extracolonic findings were detected in ULD-FBP and ULD-HIR, but in the E4 category by C-RADS (potentially important findings), the detection was similar. Conclusion. Both HIR and IMR are suitable for sub-milliSievert ULD CTC without sacrificing diagnostic performance of the study.

SELECTION OF CITATIONS
SEARCH DETAIL
...