Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297215

ABSTRACT

Atomic layer deposition of HfO2 from TDMAH and water or ammonia water at different temperatures below 400 °C is studied. Growth per cycle (GPC) has been recorded in the range of 1.2-1.6 Å. At low temperatures (≤100 °C), the films grew faster and are structurally more disordered, amorphous and/or polycrystalline with crystal sizes up to 29 nm, compared to the films grown at higher temperatures. At high temperatures of 240 °C, the films are better crystallized with crystal sizes of 38-40 nm but grew slower. GPC, dielectric constant, and crystalline structure are improved by depositing at temperatures above 300 °C. The dielectric constant value and the roughness of the films have been determined for monoclinic HfO2, a mixture of orthorhombic and monoclinic, as well as for amorphous HfO2. Moreover, the present study shows that the increase in the dielectric constant of the films can be achieved by using ammonia water as an oxygen precursor in the ALD growth. The detailed investigations of the relationship between HfO2 properties and growth parameters presented here have not been reported so far, and the possibilities of fine-tuning and controlling the structure and performance of these layers are still being sought.

2.
Materials (Basel) ; 16(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902872

ABSTRACT

Rare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new fields of application due to the low-cost production. Ion implantation is a very promising technique to incorporate rare-earth dopants into ZnO. However, the ballistic nature of this process makes the use of annealing essential. The selection of implantation parameters, as well as post-implantation annealing, turns out to be non-trivial because they determine the luminous efficiency of the ZnO:RE system. This paper presents a comprehensive study of the optimal implantation and annealing conditions, ensuring the most efficient luminescence of RE3+ ions in the ZnO matrix. Deep and shallow implantations, implantations performed at high and room temperature with various fluencies, as well as a range of post-RT implantation annealing processes are tested: rapid thermal annealing (minute duration) under different temperatures, times, and atmospheres (O2, N2, and Ar), flash lamp annealing (millisecond duration) and pulse plasma annealing (microsecond duration). It is shown that the highest luminescence efficiency of RE3+ is obtained for the shallow implantation at RT with the optimal fluence of 1.0 × 1015 RE ions/cm2 followed by a 10 min annealing in oxygen at 800 °C, and the light emission from such a ZnO:RE system is so bright that can be observed with the naked eye.

3.
Materials (Basel) ; 14(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576619

ABSTRACT

The continuous development of ALD thin films demands ongoing improvements and changes toward fabricating materials with tailored properties that are suitable for different practical applications. Ozone has been recently established as a precursor, with distinct advantages over the alternative oxidizing precursors in the ALDs of advanced dielectric films. This study reports alumina (Al2O3) and hafnia (HfO2) formation using an O3 source and compares the obtained structural and electrical properties. The performed structural examinations of ozone-based materials proved homogenous high-k films with less vacancy levels compared to water-based films. The enhanced structural properties also result in the problematic incorporation of different dopants through the bulk layer. Furthermore, analysis of electrical characteristics of the MIS structures with ALD gate dielectrics demonstrated the improved quality and good insulating properties of ozone-based films. However, further optimization of the ALD technique with ozone is needed as a relatively low relative permittivity characterizes the ultra-thin films.

4.
Nanotechnology ; 31(18): 184001, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31940593

ABSTRACT

Examples are presented that application of amorphous Al x O y nucleation layer is an efficient way of controlling spatial distribution of GaN nanowires grown by plasma-assisted molecular beam epitaxy. On GaN/sapphire substrates Al x O y stripes induce formation of GaN nanowires while a compact GaN layer is formed outside the stripes. We show that the ratio of nanowire length h to the thickness of the compact layer d can be tailored by adjusting impinging gallium and nitrogen fluxes. Calculations of the h/d aspect ratio were performed taking into account dependence of nanowire incubation time on the growth parameters. In agreement with calculations we found that the value of h/d ratio can be increased by increasing the N/Ga flux ratio in the way that the N-limited growth regime determines nanowire axial growth rate while growth of compact layer remains Ga-limited. This ensures the highest value of the h/d aspect ratio. Local modification of GaN growth kinetics caused by surface diffusion of Ga adatoms through the boundary separating the Al x O y stripe and the GaN/sapphire substrate is discussed. We show that during the nanowire incubation period gallium is transported out of the Al x O y stripe, which delays nanowire nucleation onset and leads to reduced length of GaN nanowires in the vicinity of the stripe edge. Simultaneously the growth on the GaN/sapphire substrate is locally enhanced, so the planar GaN layers adopts a typical edge shape of mesa structures grown by selective area growth. Ga diffusion length on a-Al x O y surface of ∼500 nm is inferred from our results.

5.
Microsc Microanal ; 21(3): 564-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25850809

ABSTRACT

We present results of cathodoluminescence (CL) investigations of high-quality zinc oxide (ZnO) nanorods obtained by an extremely fast hydrothermal method on a silicon substrate. A scanning electron microscopy (SEM) system equipped with CL allows direct comparison of SEM images and CL maps, taken from exactly the same areas of samples. Investigations are performed at a temperature of 5 K. An interlink between sample microstructure and emission properties is investigated. CL confirms a very high quality of ZnO nanorods produced by our method. In addition, the presence of super radiation effects in ZnO nanorod arrays is suggested.

6.
Beilstein J Nanotechnol ; 5: 173-9, 2014.
Article in English | MEDLINE | ID: mdl-24605282

ABSTRACT

Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%.

SELECTION OF CITATIONS
SEARCH DETAIL
...