Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37896809

ABSTRACT

The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.


Subject(s)
Bacteriophages , RNA Viruses , Virus Diseases , Viruses , Humans , Computational Biology , Viruses/genetics
2.
Bioinformatics ; 31(12): i240-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26072488

ABSTRACT

MOTIVATION: Genetic heterogeneity, the fact that several sequence variants give rise to the same phenotype, is a phenomenon that is of the utmost interest in the analysis of complex phenotypes. Current approaches for finding regions in the genome that exhibit genetic heterogeneity suffer from at least one of two shortcomings: (i) they require the definition of an exact interval in the genome that is to be tested for genetic heterogeneity, potentially missing intervals of high relevance, or (ii) they suffer from an enormous multiple hypothesis testing problem due to the large number of potential candidate intervals being tested, which results in either many false positives or a lack of power to detect true intervals. RESULTS: Here, we present an approach that overcomes both problems: it allows one to automatically find all contiguous sequences of single nucleotide polymorphisms in the genome that are jointly associated with the phenotype. It also solves both the inherent computational efficiency problem and the statistical problem of multiple hypothesis testing, which are both caused by the huge number of candidate intervals. We demonstrate on Arabidopsis thaliana genome-wide association study data that our approach can discover regions that exhibit genetic heterogeneity and would be missed by single-locus mapping. CONCLUSIONS: Our novel approach can contribute to the genome-wide discovery of intervals that are involved in the genetic heterogeneity underlying complex phenotypes. AVAILABILITY AND IMPLEMENTATION: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html.


Subject(s)
Genetic Heterogeneity , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Algorithms , Arabidopsis/genetics , Phenotype
3.
Hum Mutat ; 36(5): 513-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25684150

ABSTRACT

Prioritizing missense variants for further experimental investigation is a key challenge in current sequencing studies for exploring complex and Mendelian diseases. A large number of in silico tools have been employed for the task of pathogenicity prediction, including PolyPhen-2, SIFT, FatHMM, MutationTaster-2, MutationAssessor, Combined Annotation Dependent Depletion, LRT, phyloP, and GERP++, as well as optimized methods of combining tool scores, such as Condel and Logit. Due to the wealth of these methods, an important practical question to answer is which of these tools generalize best, that is, correctly predict the pathogenic character of new variants. We here demonstrate in a study of 10 tools on five datasets that such a comparative evaluation of these tools is hindered by two types of circularity: they arise due to (1) the same variants or (2) different variants from the same protein occurring both in the datasets used for training and for evaluation of these tools, which may lead to overly optimistic results. We show that comparative evaluations of predictors that do not address these types of circularity may erroneously conclude that circularity confounded tools are most accurate among all tools, and may even outperform optimized combinations of tools.


Subject(s)
Computational Biology/methods , Mutation, Missense , Software , Datasets as Topic , Humans , Internet , Reproducibility of Results , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...