Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 7(8): 515-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22706699

ABSTRACT

Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction), between macroscopic objects (the Casimir interaction) and between an atom and a macroscopic object (the Casimir-Polder interaction). Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices, to influence adsorption rates onto nanostructures, and to influence the interactions between biomolecules in biological systems. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems and in exploring the interactions between carbon nanotubes and cold atoms. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces and nanoscale gratings and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose-Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information.


Subject(s)
Fullerenes/chemistry , Nanotubes, Carbon/chemistry , Quantum Dots , Adsorption , Electromagnetic Fields , Nanostructures
2.
Nat Nanotechnol ; 6(7): 446-51, 2011 May 29.
Article in English | MEDLINE | ID: mdl-21623359

ABSTRACT

Scanning probe microscopes are widely used to study surfaces with atomic resolution in many areas of nanoscience. Ultracold atomic gases trapped in electromagnetic potentials can be used to study electromagnetic interactions between the atoms and nearby surfaces in chip-based systems. Here we demonstrate a new type of scanning probe microscope that combines these two areas of research by using an ultracold gas as the tip in a scanning probe microscope. This cold-atom scanning probe microscope offers a large scanning volume, an ultrasoft tip of well-defined shape and high purity, and sensitivity to electromagnetic forces (including dispersion forces near nanostructured surfaces). We use the cold-atom scanning probe microscope to non-destructively measure the position and height of carbon nanotube structures and individual free-standing nanotubes. Cooling the atoms in the gas to form a Bose-Einstein condensate increases the resolution of the device.

SELECTION OF CITATIONS
SEARCH DETAIL
...