Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell Death Discov ; 10(1): 120, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453889

ABSTRACT

Gastric cancer's (GC) bad prognosis is usually associated with metastatic spread. Invasive cancer stem cells (CSC) are considered to be the seed of GC metastasis and not all CSCs are able to initiate metastasis. Targeting these aggressive metastasis-initiating CSC (MIC) is thus vital. Leukaemia inhibitory factor (LIF) is hereby used to target Hippo pathway oncogenic members, found to be induced in GC and associated with CSC features. LIF-treated GC cell lines, patient-derived xenograft (PDX) cells and/or CSC tumourspheres underwent transcriptomics, laser microdissection-associated proteomics, 2D and 3D invasion assays and in vivo xenograft in mice blood circulation. LIFR expression was analysed on tissue microarrays from GC patients and in silico from public databases. LIF-treated cells, especially CSC, presented decreased epithelial to mesenchymal transition (EMT) phenotype and invasion capacity in vitro, and lower metastasis initiation ability in vivo. These effects involved both the Hippo and Jak/Stat pathways. Finally, GC's high LIFR expression was associated with better clinical outcomes in patients. LIF treatment could thus represent a targeted anti-CSC strategy to fight against metastatic GC, and LIFR detection in primary tumours could constitute a potential new prognosis marker in this disease.

2.
Gastric Cancer ; 27(2): 292-307, 2024 03.
Article in English | MEDLINE | ID: mdl-38280128

ABSTRACT

BACKGROUND: Gastric cancer (GC), the fourth leading cause of cancer-related death worldwide, with most deaths caused by advanced and metastatic disease, has limited curative options. Here, we revealed the importance of proprotein convertases (PCs) in the malignant and metastatic potential of GC cells through the regulation of the YAP/TAZ/TEAD pathway and epithelial-to-mesenchymal transition (EMT) in cancer stem cells (CSC). METHODS: The general PCs inhibitor, decanoyl-RVKR-chloromethyl-ketone (CMK), was used to repress PCs activity in CSCs of various GC cell lines. Their tumorigenic properties, drug resistance, YAP/TAZ/TEAD pathway activity, and invasive properties were then investigated in vitro, and their metastatic properties were explored in a mouse xenograft model. The prognostic value of PCs in GC patients was also explored in molecular databases of GC. RESULTS: Inhibition of PCs activity in CSCs in all GC cell lines reduced tumorsphere formation and growth, drug efflux, EMT phenotype, and invasive properties that are associated with repressed YAP/TAZ/TEAD pathway activity in vitro. In vivo, PCs' inhibition in GC cells reduced their metastatic spread. Molecular analysis of tumors from GC patients has highlighted the prognostic value of PCs. CONCLUSIONS: PCs are overexpressed in GC and associated with poor prognosis. PCs are involved in the malignant and metastatic potential of CSCs via the regulation of EMT, the YAP/TAZ/TEAD oncogenic pathway, and their stemness and invasive properties. Their repression represents a new strategy to target CSCs and impair metastatic spreading in GC.


Subject(s)
Stomach Neoplasms , Transcription Factors , Humans , Animals , Mice , Transcription Factors/genetics , YAP-Signaling Proteins , Stomach Neoplasms/pathology , Disease Models, Animal , Proprotein Convertases/metabolism , Neoplastic Stem Cells/metabolism
3.
Gastric Cancer ; 26(2): 234-249, 2023 03.
Article in English | MEDLINE | ID: mdl-36528833

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) are at the origin of tumour initiation and progression in gastric adenocarcinoma (GC). However, markers of metastasis-initiating cells remain unidentified in GC. In this study, we characterized CD44 variants expressed in GC and evaluated the tumorigenic and metastatic properties of CD44v3+ cells and their clinical significance in GC patients. METHODS: Using GC cell lines and patient-derived xenografts, we evaluated CD44+ and CD44v3+ GC cells molecular signature and their tumorigenic, chemoresistance, invasive and metastatic properties, and expression in patients-derived tissues. RESULTS: CD44v3+ cells, which represented a subpopulation of CD44+ cells, were detected in advanced preneoplastic lesions and presented CSCs chemoresistance and tumorigenic properties in vitro and in vivo. Molecular and functional analyses revealed two subpopulations of gastric CSCs: CD44v3+ CSCs with an epithelial-mesenchymal transition (EMT)-like signature, and CD44+/v3- CSCs with an epithelial-like signature; both were tumorigenic but CD44v3+ cells showed higher invasive and metastatic properties in vivo. CD44v3+ cells detected in the primary tumours of GC patients were associated with a worse prognosis. CONCLUSION: CD44v3 is a marker of a subpopulation of CSCs with metastatic properties in GC. The identification of metastasis-initiating cells in GC represents a major advance for further development of anti-metastatic therapeutic strategies.


Subject(s)
Carcinoma , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Carcinoma/pathology , Hyaluronan Receptors , Epithelial-Mesenchymal Transition
4.
Eur J Clin Microbiol Infect Dis ; 41(6): 875-879, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460029

ABSTRACT

PCR detection of Helicobacter pylori infection in gastric biopsies allows the detection of this bacterium and the mutations associated with macrolide resistance. The aim of this study was to evaluate the performance of RIDA®GENE H. pylori PCR (r-Biopharm) on a BD MAX™ System (Becton Dickinson). Two hundred ten gastric biopsies obtained were included. These biopsies were ground in nutrient broth. Two hundred microliters of this suspension was treated with proteinase K; 200 µL was transferred to a BD MAX™ sample tube then tested using RIDA®GENE H. pylori PCR reagents. In-house H. pylori PCR was used as a reference. The sensitivity of RIDA®GENE H. pylori PCR with BD MAX™ was 100%, the specificity was 99.08% (95% confidence interval (CI), 97.21-100%), the PPV was 99.02% (95% CI, 97.09-100%), and the NPV was 100% for the detection of H. pylori. The sensitivity was 97.14% (95% CI, 93.87-100%), the specificity was 100%, the PPV was 100%, and the NPV was 98.48% (95% CI, 96.08-100%) for categorization of macrolides resistance. The adaptation of RIDA®GENE H. pylori PCR on the BD MAX™ System is of considerable interest for microbiologists who seek to establish this assay in their laboratories.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Scrapie , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Automation , Biopsy , Clarithromycin , Drug Resistance, Bacterial/genetics , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Helicobacter pylori/genetics , Humans , Macrolides/therapeutic use , Microbial Sensitivity Tests , Polymerase Chain Reaction , Sheep/genetics
5.
Sci Rep ; 10(1): 14858, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908188

ABSTRACT

The roles of the inflammatory response and production of a proliferation-inducing ligand (APRIL) cytokine in gastric mucosa-associated lymphoid tissue (MALT) lymphomagenesis induced by Helicobacter species infection are not clearly understood. We characterized the gastric mucosal inflammatory response associated with gastric MALT lymphoma (GML) and identified APRIL-producing cells in two model systems: an APRIL transgenic mouse model of GML induced by Helicobacter infection (Tg-hAPRIL) and human gastric biopsy samples from Helicobacter pylori-infected GML patients. In the mouse model, polarization of T helper 1 (tbet), T helper 2 (gata3), and regulatory T cell (foxp3) responses was evaluated by quantitative PCR. In humans, a significant increase in april gene expression was observed in GML compared to gastritis. APRIL-producing cells were eosinophilic polynuclear cells located within lymphoid infiltrates, and tumoral B lymphocytes were targeted by APRIL. Together, the results of this study demonstrate that the Treg-balanced inflammatory environment is important for gastric lymphomagenesis induced by Helicobacter species, and suggest the pro-tumorigenic potential of APRIL-producing eosinophils.


Subject(s)
B-Lymphocytes/immunology , Eosinophils/immunology , Helicobacter Infections , Lymphoma, B-Cell, Marginal Zone , T-Lymphocytes/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology , Adult , Animals , Female , Gastric Mucosa/immunology , Gastric Mucosa/pathology , Helicobacter Infections/complications , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Humans , Lymphoma, B-Cell, Marginal Zone/etiology , Lymphoma, B-Cell, Marginal Zone/immunology , Lymphoma, B-Cell, Marginal Zone/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged
6.
Mol Ther Oncolytics ; 16: 250-261, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32140563

ABSTRACT

Human cytomegalovirus (HCMV) components are often found in tumors, but the precise relationship between HCMV and cancer remains a matter of debate. Pro-tumor functions of HCMV were described in several studies, but an association between HCMV seropositivity and reduced cancer risk was also evidenced, presumably relying on recognition and killing of cancer cells by HCMV-induced lymphocytes. This study aimed at deciphering whether CMV influences cancer development in an immune-independent manner. Using immunodeficient mice, we showed that systemic infection with murine CMV (MCMV) inhibited the growth of murine carcinomas. Surprisingly, MCMV, but not HCMV, also reduced human colon carcinoma development in vivo. In vitro, both viruses infected human cancer cells. Expression of human interferon-ß (IFN-ß) and nuclear domain (ND10) were induced in MCMV-infected, but not in HCMV-infected human colon cancer cells. These results suggest a decreased capacity of MCMV to counteract intrinsic defenses in the human cellular host. Finally, immunodeficient mice receiving peri-tumoral MCMV therapy showed a reduction of human colon cancer cell growth, albeit no clinical sign of systemic virus dissemination was evidenced. Our study, which describes a selective advantage of MCMV over HCMV to control human colon cancer, could pave the way for the development of CMV-based therapies against cancer.

7.
J Alzheimers Dis ; 73(2): 801-809, 2020.
Article in English | MEDLINE | ID: mdl-31868664

ABSTRACT

Despite extensive research, the origin of Alzheimer's disease (AD) remains unknown. The role of infectious pathogens has recently emerged. Epidemiological studies have shown that Helicobacter pylori infection increases the risk of developing AD. We hypothesized that H. pylori-induced gastritis may be associated with a systemic inflammation and finally neuroinflammation. C57BL/6 mice were infected with H. pylori (n = 15) or Helicobacter felis (n = 13) or left uninfected (n = 9) during 18 months. Gastritis, amyloid deposition, astroglial and microglial cell area, and systemic and brain cytokines were assessed. The infection (H. felis> H. pylori) induced a severe gastritis and an increased neuroinflammation but without brain amyloid deposition or systemic inflammation.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/microbiology , Encephalitis/etiology , Gastritis/complications , Gastritis/microbiology , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter pylori , Inflammation/complications , Inflammation/microbiology , Animals , Astrocytes/pathology , Brain Chemistry , Cytokines/metabolism , Helicobacter felis , Mice , Mice, Inbred C57BL , Microglia/pathology , Plaque, Amyloid/pathology
8.
Cell Mol Gastroenterol Hepatol ; 9(2): 257-276, 2020.
Article in English | MEDLINE | ID: mdl-31669263

ABSTRACT

BACKGROUND & AIMS: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. METHODS: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. RESULTS: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other's expression. Loss-of-function experiments showed that LATS2 restricts H pylori-induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori-induced preneoplastic changes. CONCLUSIONS: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host-pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development.


Subject(s)
Epithelial-Mesenchymal Transition/immunology , Gastric Mucosa/pathology , Helicobacter Infections/pathology , Precancerous Conditions/pathology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Animals , Cell Cycle Proteins/metabolism , Female , Gastric Mucosa/microbiology , Gene Expression Regulation, Neoplastic/immunology , Helicobacter Infections/genetics , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Host-Pathogen Interactions/genetics , Humans , Male , Metaplasia/genetics , Metaplasia/microbiology , Metaplasia/pathology , Mice , Precancerous Conditions/genetics , Precancerous Conditions/immunology , Protective Factors , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
9.
Front Microbiol ; 10: 2820, 2019.
Article in English | MEDLINE | ID: mdl-31866982

ABSTRACT

The present study describes three putative novel species received at the French National Reference Center for Campylobacters & Helicobacters (CNRCH). The CNRCH 2005/566H strain was isolated in 2005 from the feces of a patient with a hepatocellular carcinoma and gastroenteritis. Strain 48519 was isolated in 2017 from the blood of a male patient suffering from a bacteremia. Strain Cn23e was isolated from a gastric biopsy from a dog suffering from chronic gastritis. Biochemical and growth characteristics and electron microscopy for these three strains were studied. Their genomes were also sequenced. gyrA based phylogeny built with 72 nucleotide sequences placed CNRCH 2005/566H among the unsheathed enterohepatic helicobacters, close to Helicobacter valdiviensis; strain 48519 among the sheathed enterohepatic helicobacters, close to Helicobacter cinaedi; and strain Cn23e among gastric helicobacters, close to Helicobacter felis. 16S rRNA gene phylogeny showed similar results, but with weak discriminant strength. Average nucleotide identity and in silico DNA-DNA hybridization analyses revealed that CNRCH 2005/566H and 48519 strains belong to new putative species, but confirmed that Cn23e corresponds to H. felis. Cn23e was able to infect C57BL6 mice and to induce gastric inflammation. The genomics data, together with their different morphological and biochemical characteristics, revealed that these two strains represent novel Helicobacter species. We propose the following names: 'Helicobacter burdigaliensis,' with the type strain CNRCH 2005/566H ( =CECT 8850 =CIP 111660), and 'Helicobacter labetoulli,' with the type strain 48519 ( =CCUG 73475 =CIP 1111659). This study highlights that the diversity of the Helicobacteraceae family remains to be fully explored.

10.
Pharmaceutics ; 11(12)2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31847484

ABSTRACT

Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against Helicobacter pylori. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the H. pylori response regulator HsrA and investigated both the in vitro antimicrobial activities and the in vivo efficacy of DHP treatments against H. pylori. Six different commercially available and highly prescribed DHP drugs-namely, Nifedipine, Nicardipine, Nisoldipine, Nimodipine, Nitrendipine, and Lercanidipine-noticeably inhibited the DNA binding activity of HsrA and exhibited potent bactericidal activities against both metronidazole- and clarithromycin-resistant strains of H. pylori, with minimal inhibitory concentration (MIC) values in the range of 4 to 32 mg/L. The dynamics of the decline in the bacterial counts at 2 × MIC appeared to be correlated with the lipophilicity of the drugs, suggesting different translocation efficiencies of DHPs across the bacterial membrane. Oral treatments with 100 mg/kg/day of marketed formulations of Nimodipine or Nitrendipine in combination with omeprazole significantly reduced the H. pylori gastric colonization in mice. The results presented here support a novel therapeutic solution for treatment of antibiotic-resistant H. pylori infections.

11.
Cancers (Basel) ; 11(4)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010193

ABSTRACT

Gastric cancer is the third leading cause of cancer mortality worldwide. Cancer stem cells (CSC) are at the origin of tumor initiation, chemoresistance, and the formation of metastases. However, there is a lack of mouse models enabling the study of the metastatic process in gastric adenocarcinoma (GC). The aims of this study were to develop original mouse models of patient-derived primary GC orthotopic xenografts (PDOX) allowing the development of distant metastases as preclinical models to study the anti-metastatic efficiency of drugs such as the phosphatidylinositol 3-kinase (PI3K) inhibitor Buparlisib (BKM120). Luciferase-encoding cells generated from primary GC were injected into the stomach wall of immunocompromised mice; gastric tumor and metastases development were followed by bioluminescence imaging. The anti-CSC properties of BKM120 were evaluated on the GC cells' phenotype (CD44 expression) and tumorigenic properties in vitro and in vivo on BKM120-treated mice. After eight weeks, PDOX mice formed tumors in the stomach as well as distant metastases, that were enriched in CSC, in the liver, the lung, and the peritoneal cavity. BKM120 treatment significantly inhibited the CSC properties in vitro and reduced the number of distant metastases in mice. These new preclinical models offer the opportunity to study the anti-metastatic efficiency of new CSC-based therapeutic strategies.

12.
Haematologica ; 104(10): 2017-2027, 2019 10.
Article in English | MEDLINE | ID: mdl-30923103

ABSTRACT

Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones.


Subject(s)
Benzothiazoles/pharmacology , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/metabolism , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins/biosynthesis , Receptor Protein-Tyrosine Kinases/biosynthesis , STAT5 Transcription Factor/metabolism , Tumor Microenvironment , fms-Like Tyrosine Kinase 3/metabolism , Cell Hypoxia , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Humans , K562 Cells , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , STAT5 Transcription Factor/genetics , Up-Regulation/drug effects , fms-Like Tyrosine Kinase 3/genetics , Axl Receptor Tyrosine Kinase
13.
Article in English | MEDLINE | ID: mdl-28560185

ABSTRACT

Helicobacter pylori infection is considered as an excellent model of chronic inflammation-induced tumor development. Our project focuses on gastric MALT lymphoma (GML) related to H. pylori infection and mediated by the chronic inflammatory process initiated by the infection. Recently, microRNAs (miRNAs) have emerged as a new class of gene regulators, which play key roles in inflammation and carcinogenesis acting as oncogenes or tumor suppressors. Their precise characterization in the development of inflammation and their contribution in regulating host cells responses to infection by H. pylori have been little explored. Our goal was to analyze the changes in miRNAs in a GML mouse model using BALB/c mice thymectomized at day 3 post-birth (d3Tx model) and to clarify their implication in GML pathogenesis. PCR array followed by RT-qPCR identified five miRNAs (miR-21a, miR-135b, miR-142a, miR-150, miR-155) overexpressed in the stomachs of GML-developing d3Tx mice infected by H. pylori. The analysis of their putative targets allowed us to identify TP53INP1, an anti-proliferative and pro-apoptotic protein, as a common target of 4 of the 5 up-regulated miRNAs. We postulate that these miRNAs may act in synergy to promote the development of GML. miR-142a was also overexpressed in mouse sera samples and therefore could serve as a diagnostic marker. In situ hybridization on gastric samples with miR-142a revealed a global up-regulation of this miRNA by the tumor microenvironment at the lymphoma stage. Dysregulation of miR-21a, miR-135b, miR-142a, miR-150, miR-155 could play a critical role in the pathogenesis of GML and might offer potential applications as therapeutic targets and novel biomarkers for this disease.


Subject(s)
Helicobacter Infections/complications , Helicobacter pylori/pathogenicity , Lymphoma, B-Cell, Marginal Zone/immunology , Lymphoma, Non-Hodgkin/immunology , MicroRNAs/biosynthesis , MicroRNAs/genetics , Stomach Neoplasms/immunology , Animals , Apoptosis , Biomarkers , Carcinogenesis , Disease Models, Animal , Gene Expression Regulation , In Situ Hybridization , Inflammation/immunology , Inflammation/microbiology , Lymphoma, B-Cell, Marginal Zone/genetics , Lymphoma, B-Cell, Marginal Zone/metabolism , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/metabolism , Mice , Mice, Inbred BALB C , Nuclear Proteins/metabolism , Oncogenes , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
14.
Am J Pathol ; 187(7): 1473-1484, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28460208

ABSTRACT

APRIL is a member of the tumor necrosis factor cytokine family involved in the regulation of B-cell immunity. We present a study of the infection by Helicobacter species of transgenic (Tg) C57BL6 mice, ectopically expressing the human form of APRIL. Wild-type (WT) and APRIL Tg mice were infected with Helicobacter felis and Helicobacter pylori and compared with noninfected animals. Mice were euthanized 18 months after infection, and inflammatory responses and histologic alterations were analyzed. Flow cytometry results revealed that WT-infected mice had less leukocyte infiltration than APRIL Tg-infected mice. In WT-infected mice, infiltrates in gastric tissues were predominantly composed of T cells, mainly CD4+ for H. pylori and CD8+ for H. felis. In APRIL Tg-infected mice, leukocyte infiltrates were composed of B cells with few CD4+ T cells for both species. B cells expressed B surface markers compatible with a marginal zone origin. These results were confirmed by immunohistochemistry. B cells in particular were involved in lymphoepithelial lesions, a hallmark of gastric MALT lymphoma. Monoclonality was observed in a few infiltrates in the presence of lymphoepithelial lesions. These results confirm the importance of APRIL in the development of gastric lymphoid infiltrates induced by Helicobacter species in vivo. We believe that APRIL Tg mice infected by Helicobacter species may represent a novel animal model of gastric lymphomagenesis.


Subject(s)
Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Lymphoma, B-Cell, Marginal Zone/microbiology , Lymphoma, Non-Hodgkin/microbiology , Stomach Neoplasms/microbiology , Animals , B-Lymphocytes/microbiology , B-Lymphocytes/pathology , Bacterial Load , CD4-Positive T-Lymphocytes/microbiology , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Humans , Immunohistochemistry , Inflammation , Lymphoid Tissue/microbiology , Lymphoid Tissue/pathology , Lymphoma, B-Cell, Marginal Zone/immunology , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Stomach/microbiology , Stomach/pathology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology
15.
J Cell Sci ; 130(10): 1796-1808, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28386023

ABSTRACT

Unr (officially known as CSDE1) is a cytoplasmic RNA-binding protein with roles in the regulation of mRNA stability and translation. In this study, we identified a novel function for Unr, which acts as a positive regulator of placental development. Unr expression studies in the developing placenta revealed the presence of Unr-rich foci that are apparently located in the nuclei of trophoblast giant cells (TGCs). We determined that what we initially thought to be foci, were actually cross sections of a network of double-wall nuclear membrane invaginations that contain a cytoplasmic core related to the nucleoplasmic reticulum (NR). We named them, accordingly, Unr-NRs. Unr-NRs constitute a novel type of NR because they contain high levels of poly(A) RNA and translation factors, and are sites of active translation. In murine tissues, Unr-NRs are only found in two polyploid cell types, in TGCs and hepatocytes. In vitro, their formation is linked to stress and polyploidy because, in three cancer cell lines, cytotoxic drugs that are known to promote polyploidization induce their formation. Finally, we show that Unr is required in vivo for the formation of Unr-containing NRs because these structures are absent in Unr-null TGCs.


Subject(s)
Nuclear Envelope/metabolism , Poly(A)-Binding Proteins/metabolism , Protein Biosynthesis , Animals , Cell Line, Tumor , Embryo Loss/pathology , Eukaryotic Initiation Factors/metabolism , Female , Hepatocytes/metabolism , Mice, Inbred C57BL , Nuclear Envelope/ultrastructure , Placenta/abnormalities , Poly A , Poly(A)-Binding Proteins/genetics , Polyploidy , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Stress, Physiological , Trophoblasts/metabolism
16.
Oncotarget ; 7(49): 80688-80699, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27729612

ABSTRACT

Helicobacter pylori infection is responsible for gastric carcinogenesis but host factors are also implicated. IQGAP1, a scaffolding protein of the adherens junctions interacting with E-cadherin, regulates cellular plasticity and proliferation. In mice, IQGAP1 deficiency leads to gastric hyperplasia. The aim of this study was to elucidate the consequences of IQGAP1 deletion on H. pylori-induced gastric carcinogenesis.Transgenic mice deleted for iqgap1 and WT littermates were infected with Helicobacter sp., and histopathological analyses of the gastric mucosa were performed. IQGAP1 and E-cadherin expression was evaluated in gastric tissues and in gastric epithelial cell lines in response to H. pylori infection. The consequences of IQGAP1 deletion on gastric epithelial cell behaviour and on the acquisition of cancer stem cell (CSC)-like properties were evaluated. After one year of infection, iqgap1+/- mice developed more preneoplastic lesions and up to 8 times more gastro-intestinal neoplasia (GIN) than WT littermates. H. pylori infection induced IQGAP1 and E-cadherin delocalization from cell-cell junctions. In vitro, knock-down of IQGAP1 favoured the acquisition of a mesenchymal phenotype and CSC-like properties induced by H. pylori infection.Our results indicate that alterations in IQGAP1 signalling promote the emergence of CSCs and gastric adenocarcinoma development in the context of an H. pylori infection.


Subject(s)
Adenocarcinoma/microbiology , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/pathogenicity , Neoplastic Stem Cells/microbiology , Precancerous Conditions/microbiology , Stomach Neoplasms/microbiology , ras GTPase-Activating Proteins/deficiency , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cadherins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Disease Models, Animal , Epithelial-Mesenchymal Transition , Female , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Genetic Predisposition to Disease , Helicobacter Infections/genetics , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Host-Pathogen Interactions , Hyaluronan Receptors/metabolism , Hyperplasia , Mice, 129 Strain , Mice, Knockout , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Phenotype , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Time Factors , ras GTPase-Activating Proteins/genetics
17.
Am J Pathol ; 186(7): 1775-1785, 2016 07.
Article in English | MEDLINE | ID: mdl-27181405

ABSTRACT

Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of diseases primarily involving the skin that could have an aggressive course with circulating blood cells, especially in Sézary syndrome and transformed mycosis fungoides. So far, few CTCL cell lines have been adapted for in vivo experiments and their tumorigenicity has not been adequately assessed, hampering the use of a reproducible model for CTCL biological evaluation. In fact, both patient-derived xenografts and cell line xenografts at subcutaneous sites failed to provide a robust tool, because engraftment was dependent on mice strain and cell line subtype. Herein, we describe an original method of intrahepatic injection into adult NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ mice liver of both aggressive (My-La, HUT78, HH, MAC2A, and MAC2B) and indolent (FE-PD and MAC1) CTCL cell lines. Six of the seven CTCL cell lines were grafted with a high rate of success (80%). Moreover, this model provided a quick (15 days) and robust assay for in vivo evaluation of CTCL cell lines tumorigenicity and therapeutic response in preclinical studies. Such a reproducible model can be therefore used for further functional studies and in vivo drug testing.


Subject(s)
Cell Line, Tumor/transplantation , Liver , Lymphoma, T-Cell, Cutaneous/pathology , Xenograft Model Antitumor Assays/methods , Animals , Humans , Immunohistochemistry , Mice , Mice, Inbred NOD
18.
Oncotarget ; 7(3): 3394-402, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26657504

ABSTRACT

It has been postulated that the emergence of autoimmune gastritis in neonatal thymectomised (d3Tx) BALB/c mice may be a consequence of post-surgery deficit in Tregs. In this study, previously obtained samples from d3Tx mice were used in order to determine whether thymectomy creates a deficit in this T cell subset thereby allowing the emergence of autoimmune phenomena as a prerequisite for GML. The splenic Treg reserve and the local recruitment of these cells in the gastric mucosa were investigated using complementary molecular and immunohistochemistry approaches. Higher Foxp3/CD3 ratios were found in the spleen of non-infected d3Tx mice compared to non-thymectomised (NTx) controls. These results indicate a relative enrichment of Tregs following thymectomy in adult mice. The absence of Treg depletion in d3Tx mice is in line with the absence of auto-immune gastritis in non-infected d3Tx mice. Higher levels of T cell and Treg infiltration were also found in the stomach of GML-developing d3Tx mice versus NTx mice. Surprisingly, inflammatory scores inversely correlated with the bacterial inoculum. The presence of a small Treg containing compartment among gastric biopsies of GML developing d3Tx mice may play a role in perseverance of a minimal bacterial numbers thereby maintaining an antigen-dependent stimulation and proliferation.


Subject(s)
Disease Models, Animal , Gastric Mucosa/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Lymphoma, B-Cell, Marginal Zone/immunology , Lymphoma, Non-Hodgkin/immunology , Stomach Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Immunoenzyme Techniques , Lymphoma, B-Cell, Marginal Zone/microbiology , Lymphoma, B-Cell, Marginal Zone/pathology , Lymphoma, Non-Hodgkin/microbiology , Lymphoma, Non-Hodgkin/pathology , Mice , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
19.
PLoS Pathog ; 11(3): e1004702, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25747674

ABSTRACT

Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αß and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αß T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αß T cell compromised patients.


Subject(s)
Herpesviridae Infections/immunology , Immunity, Cellular , Muromegalovirus/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Herpesviridae Infections/genetics , Herpesviridae Infections/pathology , Mice , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes/pathology
20.
J Alzheimers Dis ; 45(4): 1045-50, 2015.
Article in English | MEDLINE | ID: mdl-25697698

ABSTRACT

There is increasing evidence to support the role of infectious agents in the progression of Alzheimer's disease (AD), especially Helicobacter pylori (H. pylori). The impact of Helicobacter infection on the brain of non-AD predisposed mice was studied. For that, C57BL/6J mice were infected by oral gavage with H. pylori SS1 (n = 6) and Helicobacter felis (H. felis) (n=6) or not infected (n = 6) for evaluation of neuroinflammation (anti-GFAP and anti-iba1 immunohistochemistry) and amyloid-ß deposition (thioflavin-S stain and anti-Aß immunohistochemistry). After 18-month of infection, H. pylori SS1 and H. felis infection induced a strong gastric inflammation compared to non-infected mice, but did not induce brain neuroinflammation or amyloid-ß deposition.


Subject(s)
Brain/immunology , Brain/pathology , Helicobacter Infections/immunology , Helicobacter Infections/pathology , Helicobacter felis , Helicobacter pylori , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Mice, Inbred C57BL , Neuroimmunomodulation , Plaque, Amyloid/immunology , Plaque, Amyloid/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...