Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 29(4): 1640-1646, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29980928

ABSTRACT

OBJECTIVES: To assess undergraduate medical students' attitudes towards artificial intelligence (AI) in radiology and medicine. MATERIALS AND METHODS: A web-based questionnaire was designed using SurveyMonkey, and was sent out to students at three major medical schools. It consisted of various sections aiming to evaluate the students' prior knowledge of AI in radiology and beyond, as well as their attitude towards AI in radiology specifically and in medicine in general. Respondents' anonymity was ensured. RESULTS: A total of 263 students (166 female, 94 male, median age 23 years) responded to the questionnaire. Around 52% were aware of the ongoing discussion about AI in radiology and 68% stated that they were unaware of the technologies involved. Respondents agreed that AI could potentially detect pathologies in radiological examinations (83%) but felt that AI would not be able to establish a definite diagnosis (56%). The majority agreed that AI will revolutionise and improve radiology (77% and 86%), while disagreeing with statements that human radiologists will be replaced (83%). Over two-thirds agreed on the need for AI to be included in medical training (71%). In sub-group analyses male and tech-savvy respondents were more confident on the benefits of AI and less fearful of these technologies. CONCLUSION: Contrary to anecdotes published in the media, undergraduate medical students do not worry that AI will replace human radiologists, and are aware of the potential applications and implications of AI on radiology and medicine. Radiology should take the lead in educating students about these emerging technologies. KEY POINTS: • Medical students are aware of the potential applications and implications of AI in radiology and medicine in general. • Medical students do not worry that the human radiologist or physician will be replaced. • Artificial intelligence should be included in medical training.


Subject(s)
Artificial Intelligence , Attitude of Health Personnel , Attitude to Computers , Radiology/education , Students, Medical/psychology , Adult , Education, Medical, Undergraduate/methods , Female , Germany , Humans , Male , Radiologists , Radiology/methods , Surveys and Questionnaires , Young Adult
2.
Med Phys ; 41(1): 012302, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24387523

ABSTRACT

PURPOSE: Ultrashort echo time (UTE) MRI has been proposed as a way to produce segmented attenuation maps for PET, as it provides contrast between bone, air, and soft tissue. However, UTE sequences require samples to be acquired during rapidly changing gradient fields, which makes the resulting images prone to eddy current artifacts. In this work it is demonstrated that this can lead to misclassification of tissues in segmented attenuation maps (AC maps) and that these effects can be corrected for by measuring the true k-space trajectories using a magnetic field camera. METHODS: The k-space trajectories during a dual echo UTE sequence were measured using a dynamic magnetic field camera. UTE images were reconstructed using nominal trajectories and again using the measured trajectories. A numerical phantom was used to demonstrate the effect of reconstructing with incorrect trajectories. Images of an ovine leg phantom were reconstructed and segmented and the resulting attenuation maps were compared to a segmented map derived from a CT scan of the same phantom, using the Dice similarity measure. The feasibility of the proposed method was demonstrated in in vivo cranial imaging in five healthy volunteers. Simulated PET data were generated for one volunteer to show the impact of misclassifications on the PET reconstruction. RESULTS: Images of the numerical phantom exhibited blurring and edge artifacts on the bone-tissue and air-tissue interfaces when nominal k-space trajectories were used, leading to misclassification of soft tissue as bone and misclassification of bone as air. Images of the tissue phantom and the in vivo cranial images exhibited the same artifacts. The artifacts were greatly reduced when the measured trajectories were used. For the tissue phantom, the Dice coefficient for bone in MR relative to CT was 0.616 using the nominal trajectories and 0.814 using the measured trajectories. The Dice coefficients for soft tissue were 0.933 and 0.934 for the nominal and measured cases, respectively. For air the corresponding figures were 0.991 and 0.993. Compared to an unattenuated reference image, the mean error in simulated PET uptake in the brain was 9.16% when AC maps derived from nominal trajectories was used, with errors in the SUV max for simulated lesions in the range of 7.17%-12.19%. Corresponding figures when AC maps derived from measured trajectories were used were 0.34% (mean error) and -0.21% to +1.81% (lesions). CONCLUSIONS: Eddy current artifacts in UTE imaging can be corrected for by measuring the true k-space trajectories during a calibration scan and using them in subsequent image reconstructions. This improves the accuracy of segmented PET attenuation maps derived from UTE sequences and subsequent PET reconstruction.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Fields , Magnetic Resonance Imaging , Positron-Emission Tomography , Skull/diagnostic imaging , Humans , Models, Theoretical , Phantoms, Imaging , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...