Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36652740

ABSTRACT

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Subject(s)
Daphnia , Metals, Rare Earth , Animals , Metals, Rare Earth/toxicity , Samarium , Lanthanum/toxicity , Neodymium/pharmacology , Chelating Agents/pharmacology
2.
Extr Ind Soc ; 12: 101113, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35694181

ABSTRACT

In 2020, many countries endorsed lockdown measures, closed their borders, and practiced social distancing in a bid to contain COVID-19. These moves, however, disrupted global production and supply chains; no economic sector remained fully intact. The pandemic has exposed the vulnerability of supply chains in a globalized world, perhaps none more so than those linked to the distribution of essential raw materials. Minerals are considered raw materials, the extraction of which has important implications for a country's sovereignty and economic autonomy. They are found in abundance in consumer goods such as smartphones, cell phone batteries, computer monitors, cards, and other electrical and electronic products whose useful life has ended. In response to the health and economic problems arising from the current crisis, several countries have moved ahead and outlined post-COVID-19 strategies for the supply of critical metals, over the medium and long term, to reduce their dependence on other states for these commodities. This paper reflects critically on the positioning of the world's large economies, in the face of the COVID-19 crisis, on strategic minerals.

3.
3 Biotech ; 12(1): 39, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070629

ABSTRACT

In this study, a mild-temperature two-step dilute acid and alkaline pretreatment (DA-AL) process was developed to generate highly digestible cellulose pulp from sugarcane bagasse for producing fermentable sugars by novel thermophilic cellulases derived from Phomopsis stipata SC 04. First, DA pretreatment of sugarcane bagasse at 2% (w/v) H2SO4 and 121 °C for 71 min, followed by AL pretreatment at 2.2% (w/v) NaOH and 110 °C for 100 min led to the pulp containing 86% cellulose. The cellulose pulp was hydrolyzed by the immobilized P. stipata cellulase on Ca-alginate beads, following optimization of immobilization conditions. The results showed that mixing the cellulase extract and sodium alginate solutions at a volume ratio of 1:4 led to the highest immobilization efficiencies of 99.83% for ß-glucosidase and 97.52% for endoglucanase while the enzyme leakage was the lowest. The use of the immobilized cellulases led to a cellulose digestibility of 30% in the initial batch and recycling of the immobilized cellulases reduced cellulose digestibility to 18% after s recycling for two times (a total of third rounds). Overall, this study provides useful information in the use of a mild pretreatment process to produce highly digestible cellulose pulp and in the immobilization of thermophilic cellulases to produce fermentable sugars from pretreated biomass. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03101-2.

4.
MRS Energy Sustain ; 9(2): 494-500, 2022.
Article in English | MEDLINE | ID: mdl-37520803

ABSTRACT

Abstract: Replacement of conventional hydrometallurgical and pyrometallurgical process used in E-waste recycling to recover metals can be possible. The metallurgical industry has been considered biohydrometallurgical-based technologies for E-waste recycling. Biorecovery of critical metals from phosphor powder from spent lamps is an example of transition to a bio-based circular economy. E-waste contains economically significant levels of precious, critical metals and rare-earth elements (REE), apart from base metals and other toxic compounds. Recycling and recovery of critical elements from E-waste using a cost-effective technology are now among the top priorities in metallurgy due to the rapid depletion of their natural resources. This paper focuses on the perceptions of recovery of REE from phosphor powder from spent fluorescent lamps regarding a possible transition toward a bio-based economy. An overview of the worldwide E-waste and REE is also demonstrated to reinforce the arguments for the importance of E-waste as a secondary source of some critical metals. Based on the use of bioprocesses, we argue that the replacement of conventional steps used in E-waste recycling by bio-based technological processes can be possible. The bio-recycling of E-waste follows a typical sequence of industrial processes intensely used in classic pyro- and hydrometallurgy with the addition of bio-hydrometallurgical processes such as bioleaching and biosorption. We use the case study of REE biosorption as a new technology based on biological principles to exemplify the potential of urban biomining. The perspective of transition between conventional processes for the recovery of valuable metals for biohydrometallurgy defines which issues related to urban mining can influence the mineral bioeconomy. This assessment is necessary to outline future directions for sustainable recycling development to achieve United Nations Sustainable Development Goals.

5.
World J Microbiol Biotechnol ; 36(4): 52, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32172357

ABSTRACT

Rare earth elements (REE) have great demand for sustainable energy and the high-end technology sector. The high similarity of REE owing to the nature of their electronic configurations increases the difficulty and costs of the development of chemical processes for their separation and recovery. In this way, the development of green technologies is highly relevant for replacing conventional unit operations of extractive metallurgy, viz. precipitation, liquid-liquid and solid-liquid extraction, and ion-exchange. Biosorption is a physicochemical and metabolically-independent biological process based on a variety of mechanisms including absorption, adsorption, ion-exchange, surface complexation and precipitation that represents a biotechnological cost-effective innovative way for the recovery of REE from aqueous solutions. This mini-review provides an overview and current scenario of biosorption technologies existing to recover REE, seeking to address the possibilities of using a green technology approach for wastewater treatment, as well as for the recovery of these high valued elements in the REE production chain.


Subject(s)
Metals, Rare Earth/isolation & purification , Wastewater/chemistry , Adsorption , Green Chemistry Technology , Renewable Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...