Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34450868

ABSTRACT

Behavioural studies of elusive wildlife species are challenging but important when they are threatened and involved in human-wildlife conflicts. Accelerometers (ACCs) and supervised machine learning algorithms (MLAs) are valuable tools to remotely determine behaviours. Here we used five captive cheetahs in Namibia to test the applicability of ACC data in identifying six behaviours by using six MLAs on data we ground-truthed by direct observations. We included two ensemble learning approaches and a probability threshold to improve prediction accuracy. We used the model to then identify the behaviours in four free-ranging cheetah males. Feeding behaviours identified by the model and matched with corresponding GPS clusters were verified with previously identified kill sites in the field. The MLAs and the two ensemble learning approaches in the captive cheetahs achieved precision (recall) ranging from 80.1% to 100.0% (87.3% to 99.2%) for resting, walking and trotting/running behaviour, from 74.4% to 81.6% (54.8% and 82.4%) for feeding behaviour and from 0.0% to 97.1% (0.0% and 56.2%) for drinking and grooming behaviour. The model application to the ACC data of the free-ranging cheetahs successfully identified all nine kill sites and 17 of the 18 feeding events of the two brother groups. We demonstrated that our behavioural model reliably detects feeding events of free-ranging cheetahs. This has useful applications for the determination of cheetah kill sites and helping to mitigate human-cheetah conflicts.


Subject(s)
Acinonyx , Acceleration , Animals , Animals, Wild , Humans , Machine Learning , Male , Namibia
2.
PLoS One ; 15(5): e0227317, 2020.
Article in English | MEDLINE | ID: mdl-32369485

ABSTRACT

1. Remotely tracking distinct behaviours of animals using acceleration data and machine learning has been carried out successfully in several species in captive settings. In order to study the ecology of animals in natural habitats, such behaviour classification models need to be transferred to wild individuals. However, at present, the development of those models usually requires direct observation of the target animals. 2. The goal of this study was to infer the behaviour of wild, free-roaming animals from acceleration data by training behaviour classification models on captive individuals, without the necessity to observe their wild conspecifics. We further sought to develop methods to validate the credibility of the resulting behaviour extrapolations. 3. We trained two machine learning algorithms proposed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We also tested a new advance for behaviour classification, by applying a moving window to an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our classification output. 4. While all three machine learning algorithms performed well under training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established methods, RF and SVM, failed in classifying distinct behaviours when transferred from captive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast, inferred distinct behaviours and showed consistent results for most individuals. 5. Our approach is a substantial improvement over the methods previously proposed in the literature as it generated plausible results for wild fox behaviour. We were able to infer the behaviour of wild animals that have never been observed in the wild and to further illustrate the credibility of the output. This framework is not restricted to foxes but can be applied to infer the behaviour of many other species and thus empowers new advances in behavioural ecology.


Subject(s)
Animals, Wild/physiology , Behavior, Animal/physiology , Machine Learning , Support Vector Machine , Algorithms , Animals , Humans , Neural Networks, Computer
3.
R Soc Open Sci ; 7(12): 201356, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33489280

ABSTRACT

By 2040, roughly two-thirds of humanity are expected to live in urban areas. As cities expand, humans irreversibly transform natural ecosystems, creating both opportunities and challenges for wildlife. Here, we investigate how the Northern Goshawk (Accipiter gentilis) is adjusting to urban environments. We measured a variety of behavioural and ecological parameters in three urban and four rural study sites. City life appeared related to all parameters we measured. Urban female goshawks were overall 21.7 (CI95% 5.13-130) times more likely to defend their nestlings from humans than rural females. Urban goshawks were 3.64 (CI95% 2.05-6.66) times more likely to feed on pigeons and had diets exhibiting lower overall species richness and diversity. Urban females laid eggs 12.5 (CI95% 7.12-17.4) days earlier than rural individuals and were 2.22 (CI95% 0.984-4.73) times more likely to produce a brood of more than three nestlings. Nonetheless, urban goshawks suffered more from infections with the parasite Trichomonas gallinae, which was the second most common cause of mortality (14.6%), after collisions with windows (33.1%). In conclusion, although city life is associated with significant risks, goshawks appear to thrive in some urban environments, most likely as a result of high local availability of profitable pigeon prey. We conclude that the Northern Goshawk can be classified as an urban exploiter in parts of its distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...