Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Sci Rep ; 14(1): 10136, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698049

ABSTRACT

Exocrine and endocrine pancreas are interconnected anatomically and functionally, with vasculature facilitating bidirectional communication. Our understanding of this network remains limited, largely due to two-dimensional histology and missing combination with three-dimensional imaging. In this study, a multiscale 3D-imaging process was used to analyze a porcine pancreas. Clinical computed tomography, digital volume tomography, micro-computed tomography and Synchrotron-based propagation-based imaging were applied consecutively. Fields of view correlated inversely with attainable resolution from a whole organism level down to capillary structures with a voxel edge length of 2.0 µm. Segmented vascular networks from 3D-imaging data were correlated with tissue sections stained by immunohistochemistry and revealed highly vascularized regions to be intra-islet capillaries of islets of Langerhans. Generated 3D-datasets allowed for three-dimensional qualitative and quantitative organ and vessel structure analysis. Beyond this study, the method shows potential for application across a wide range of patho-morphology analyses and might possibly provide microstructural blueprints for biotissue engineering.


Subject(s)
Imaging, Three-Dimensional , Multimodal Imaging , Pancreas , Animals , Imaging, Three-Dimensional/methods , Pancreas/diagnostic imaging , Pancreas/blood supply , Swine , Multimodal Imaging/methods , X-Ray Microtomography/methods , Islets of Langerhans/diagnostic imaging , Islets of Langerhans/blood supply , Tomography, X-Ray Computed/methods
2.
Gut ; 72(12): 2344-2353, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37709492

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Differentiation from chronic pancreatitis (CP) is currently inaccurate in about one-third of cases. Misdiagnoses in both directions, however, have severe consequences for patients. We set out to identify molecular markers for a clear distinction between PDAC and CP. DESIGN: Genome-wide variations of DNA-methylation, messenger RNA and microRNA level as well as combinations thereof were analysed in 345 tissue samples for marker identification. To improve diagnostic performance, we established a random-forest machine-learning approach. Results were validated on another 48 samples and further corroborated in 16 liquid biopsy samples. RESULTS: Machine-learning succeeded in defining markers to differentiate between patients with PDAC and CP, while low-dimensional embedding and cluster analysis failed to do so. DNA-methylation yielded the best diagnostic accuracy by far, dwarfing the importance of transcript levels. Identified changes were confirmed with data taken from public repositories and validated in independent sample sets. A signature of six DNA-methylation sites in a CpG-island of the protein kinase C beta type gene achieved a validated diagnostic accuracy of 100% in tissue and in circulating free DNA isolated from patient plasma. CONCLUSION: The success of machine-learning to identify an effective marker signature documents the power of this approach. The high diagnostic accuracy of discriminating PDAC from CP could have tremendous consequences for treatment success, once the result from still a limited number of liquid biopsy samples would be confirmed in a larger cohort of patients with suspected pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis, Chronic , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , DNA Methylation , DNA , Biomarkers, Tumor/genetics , Pancreatic Neoplasms
3.
Clin Cancer Res ; 29(8): 1535-1545, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36516200

ABSTRACT

PURPOSE: Intraductal papillary mucinous neoplasm (IPMN) is a precursor of pancreatic ductal adenocarcinoma. Low-grade dysplasia has a relatively good prognosis, whereas high-grade dysplasia and IPMN invasive carcinoma require surgical intervention. However, diagnostic distinction is difficult. We aimed to identify biomarkers in peripheral blood for accurate discrimination. EXPERIMENTAL DESIGN: Sera were obtained from 302 patients with IPMNs and 88 healthy donors. For protein biomarkers, serum samples were analyzed on microarrays made of 2,977 antibodies. A support vector machine (SVM) algorithm was applied to define classifiers, which were validated on a separate sample set. For microRNA biomarkers, a PCR-based screen was performed for discovery. Biomarker candidates confirmed by quantitative PCR were used to train SVM classifiers, followed by validation in a different sample set. Finally, a combined SVM classifier was established entirely independent of the earlier analyses, again using different samples for training and validation. RESULTS: Panels of 26 proteins or seven microRNAs could distinguish high- and low-risk IPMN with an AUC value of 95% and 94%, respectively. Upon combination, a panel of five proteins and three miRNAs yielded an AUC of 97%. These values were much better than those obtained in the same patient cohort by using the guideline criteria for discrimination. In addition, accurate discrimination was achieved between other patient subgroups. CONCLUSIONS: Protein and microRNA biomarkers in blood allow precise diagnosis and risk stratification of IPMN cases, which should improve patient management and thus the prognosis of IPMN patients. See related commentary by Löhr and Pantel, p. 1387.


Subject(s)
Adenocarcinoma, Mucinous , Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Pancreatic Intraductal Neoplasms/diagnosis , Pancreatic Intraductal Neoplasms/genetics , Pancreatic Intraductal Neoplasms/pathology , Adenocarcinoma, Mucinous/diagnosis , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreas/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , MicroRNAs/genetics , Biomarkers , Hyperplasia , Risk Assessment
4.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509284

ABSTRACT

Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD). HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) control cellular adaptation to hypoxia and are considered promising therapeutic targets in IBD. However, their relevance in the pathogenesis of CAC remains elusive. We induced CAC in Phd1-/-, Phd2+/-, Phd3-/-, and WT mice with azoxymethane (AOM) and dextran sodium sulfate (DSS). Phd1-/- mice were protected against chronic colitis and displayed diminished CAC growth compared with WT mice. In Phd3-/- mice, colitis activity and CAC growth remained unaltered. In Phd2+/- mice, colitis activity was unaffected, but CAC growth was aggravated. Mechanistically, Phd2 deficiency (i) increased the number of tumor-associated macrophages in AOM/DSS-induced tumors, (ii) promoted the expression of EGFR ligand epiregulin in macrophages, and (iii) augmented the signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 signaling, which at least in part contributed to aggravated tumor cell proliferation in colitis-associated tumors. Consistently, Phd2 deficiency in hematopoietic (Vav:Cre-Phd2fl/fl) but not in intestinal epithelial cells (Villin:Cre-Phd2fl/fl) increased CAC growth. In conclusion, the 3 different PHD isoenzymes have distinct and nonredundant effects, promoting (PHD1), diminishing (PHD2), or neutral (PHD3), on CAC growth.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Animals , Mice , Azoxymethane , Colitis/chemically induced , Colitis/complications , Colitis/metabolism , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/metabolism , Epithelial Cells/metabolism , Prolyl Hydroxylases/metabolism
5.
J Exp Clin Cancer Res ; 41(1): 312, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273171

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are considered to play a fundamental role in pancreatic ductal adenocarcinoma (PDAC) progression and chemoresistance. Patient-derived organoids have demonstrated great potential as tumor avatars for drug response prediction in PDAC, yet they disregard the influence of stromal components on chemosensitivity. METHODS: We established direct three-dimensional (3D) co-cultures of primary PDAC organoids and patient-matched CAFs to investigate the effect of the fibroblastic compartment on sensitivity to gemcitabine, 5-fluorouracil and paclitaxel treatments using an image-based drug assay. Single-cell RNA sequencing was performed for three organoid/CAF pairs in mono- and co-culture to uncover transcriptional changes induced by tumor-stroma interaction. RESULTS: Upon co-culture with CAFs, we observed increased proliferation and reduced chemotherapy-induced cell death of PDAC organoids. Single-cell RNA sequencing data evidenced induction of a pro-inflammatory phenotype in CAFs in co-cultures. Organoids showed increased expression of genes associated with epithelial-to-mesenchymal transition (EMT) in co-cultures and several potential receptor-ligand interactions related to EMT were identified, supporting a key role of CAF-driven induction of EMT in PDAC chemoresistance. CONCLUSIONS: Our results demonstrate the potential of personalized PDAC co-cultures models not only for drug response profiling but also for unraveling the molecular mechanisms involved in the chemoresistance-supporting role of the tumor stroma.


Subject(s)
Antineoplastic Agents , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Coculture Techniques , Organoids/metabolism , Drug Resistance, Neoplasm , Patient-Specific Modeling , Ligands , Stromal Cells/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cancer-Associated Fibroblasts/metabolism , Paclitaxel/pharmacology , Fluorouracil/pharmacology , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms
6.
J Tissue Eng ; 13: 20417314221091033, 2022.
Article in English | MEDLINE | ID: mdl-35462988

ABSTRACT

Three-dimensional bioprinting of an endocrine pancreas is a promising future curative treatment for patients with insulin secretion deficiency. In this study, we present an end-to-end concept from the molecular to the macroscopic level. Building-blocks for a hybrid scaffold device of hydrogel and functionalized polycaprolactone were manufactured by 3D-(bio)printing. Pseudoislet formation from INS-1 cells after bioprinting resulted in a viable and proliferative experimental model. Transcriptomics showed an upregulation of proliferative and ß-cell-specific signaling cascades, downregulation of apoptotic pathways, overexpression of extracellular matrix proteins, and VEGF induced by pseudoislet formation and 3D-culture. Co-culture with endothelial cells created a natural cellular niche with enhanced insulin secretion after glucose stimulation. Survival and function of pseudoislets after explantation and extensive scaffold vascularization of both hydrogel and heparinized polycaprolactone were demonstrated in vivo. Computer simulations of oxygen, glucose and insulin flows were used to evaluate scaffold architectures and Langerhans islets at a future perivascular transplantation site.

7.
Sci Adv ; 8(12): eabh4050, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35319989

ABSTRACT

Radiotherapy is a mainstay cancer therapy whose antitumor effects partially depend on T cell responses. However, the role of Natural Killer (NK) cells in radiotherapy remains unclear. Here, using a reverse translational approach, we show a central role of NK cells in the radiation-induced immune response involving a CXCL8/IL-8-dependent mechanism. In a randomized controlled pancreatic cancer trial, CXCL8 increased under radiotherapy, and NK cell positively correlated with prolonged overall survival. Accordingly, NK cells preferentially infiltrated irradiated pancreatic tumors and exhibited CD56dim-like cytotoxic transcriptomic states. In experimental models, NF-κB and mTOR orchestrated radiation-induced CXCL8 secretion from tumor cells with senescence features causing directional migration of CD56dim NK cells, thus linking senescence-associated CXCL8 release to innate immune surveillance of human tumors. Moreover, combined high-dose radiotherapy and adoptive NK cell transfer improved tumor control over monotherapies in xenografted mice, suggesting NK cells combined with radiotherapy as a rational cancer treatment strategy.


Subject(s)
Interleukin-8 , Killer Cells, Natural , Neoplasms , Adoptive Transfer , Animals , Humans , Immunity , Interleukin-8/immunology , Interleukin-8/metabolism , Killer Cells, Natural/immunology , Mice , Neoplasms/immunology , Neoplasms/radiotherapy , Xenograft Model Antitumor Assays
8.
Cancers (Basel) ; 13(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34572796

ABSTRACT

Studies have indicated that some genes involved in carcinogenesis are highly methylated in their promoter regions but nevertheless strongly transcribed. It has been proposed that transcription factors could bind specifically to methylated promoters and trigger transcription. We looked at this rather comprehensively for pancreatic ductal adenocarcinoma (PDAC) and studied some cases in more detail. Some 2% of regulated genes in PDAC exhibited higher transcription coupled to promoter hypermethylation in comparison to healthy tissue. Screening 661 transcription factors, several were found to bind specifically to methylated promoters, in particular molecules of the NFAT family. One of them-NFATc1-was substantially more strongly expressed in PDAC than control tissue and exhibited a strong oncogenic role. Functional studies combined with computational analyses allowed determining affected genes. A prominent one was gene ALDH1A3, which accelerates PDAC metastasis and correlates with a bad prognosis. Further studies confirmed the direct up-regulation of ALDH1A3 transcription by NFATc1 promoter binding in a methylation-dependent process, providing insights into the oncogenic role of transcription activation in PDAC that is promoted by DNA methylation.

9.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071585

ABSTRACT

Although the oncolytic parvovirus H-1PV has entered clinical trials, predicting therapeutic success remains challenging. We investigated whether the antiviral state in tumor cells determines the parvoviral oncolytic efficacy. The interferon/interferon-stimulated genes (IFN/ISG)-circuit and its major configurator, human endogenous retroviruses (HERVs), were evaluated using qRT-PCR, ELISA, Western blot, and RNA-Seq techniques. In pancreatic cancer cell lines, H-1PV caused a late global shutdown of innate immunity, whereby the concomitant inhibition of HERVs and IFN/ISGs was co-regulatory rather than causative. The growth-inhibitory IC50 doses correlated with the power of suppression but not with absolute ISG levels. Moreover, H-1PV was not sensitive to exogenous IFN despite upregulated antiviral ISGs. Such resistance questioned the biological necessity of the oncotropic ISG-shutdown, which instead might represent a surrogate marker for personalized oncolytic efficacy. The disabled antiviral homeostasis may modify the activity of other viruses, as demonstrated by the reemergence of endogenous AluY-retrotransposons. This way of suppression may compromise the interferogenicity of drugs having gemcitabine-like mechanisms of action. This shortcoming in immunogenic cell death induction is however amendable by immune cells which release IFN in response to H-1PV.


Subject(s)
H-1 parvovirus/immunology , H-1 parvovirus/pathogenicity , Homeostasis/immunology , Immunity, Innate , Interferons/immunology , Pancreatic Neoplasms/virology , Cell Death/immunology , Cell Line, Tumor , Cytokines , Humans , Leukocytes, Mononuclear/virology , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Viruses/pathogenicity , Parvoviridae Infections/complications , Parvoviridae Infections/virology
10.
Cancer Discov ; 11(3): 638-659, 2021 03.
Article in English | MEDLINE | ID: mdl-33060108

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Carcinoma, Pancreatic Ductal/etiology , Carcinoma, Pancreatic Ductal/metabolism , DNA Methylation , Interferons/metabolism , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Repetitive Sequences, Nucleic Acid , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , CpG Islands , Disease Progression , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Reproducibility of Results , Signal Transduction , Transcriptome , Tumor Microenvironment/genetics
11.
Mol Oncol ; 14(6): 1252-1267, 2020 06.
Article in English | MEDLINE | ID: mdl-32243066

ABSTRACT

Aberrant DNA methylation is often involved in carcinogenesis. Our initial goal was to identify DNA methylation biomarkers associated with pancreatic cancer. A genomewide methylation study was performed on DNA from pancreatic ductal adenocarcinoma (PDAC) and endocrine pancreas tumors. Validation of DNA methylation patterns and concomitant alterations in expression of gene candidates was performed on patient samples and pancreatic cancer cell lines. Furthermore, validation was done on independent data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Finally, droplet digital PCR was employed to detect DNA methylation marks in cell-free (cf) DNA isolated from plasma samples of PDAC patients and cancer-free blood donors. Hypermethylation of the SST gene (encoding somatostatin) and concomitant downregulation of its expression were discovered in PDAC and endocrine tumor tissues while not being present in chronic pancreatitis (inflamed) tissues and normal pancreas. Fittingly, treatment with a somatostatin agonist (octreotide) reduced cell proliferation and migration of pancreatic cancer cells. Diagnostic performance of SST methylation in a receiver operating characteristic curve analysis was 100% and 89% for tissue and plasma samples, respectively. A large body of TCGA and GEO data confirmed SST hypermethylation and downregulation in PDAC and showed a similar effect in a broad spectrum of other tumor entities. SST promoter methylation represents a sensitive and promising molecular, pan-cancer biomarker detectable in tumor tissue, and liquid biopsy samples.


Subject(s)
Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/genetics , DNA Methylation/genetics , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Somatostatin/genetics , Adenocarcinoma/blood , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Genetic Loci , Genome, Human , Humans , Kaplan-Meier Estimate , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Principal Component Analysis , Prognosis , Reproducibility of Results , Somatostatin/agonists , Pancreatic Neoplasms
12.
J Tissue Eng ; 10: 2041731419884708, 2019.
Article in English | MEDLINE | ID: mdl-31700597

ABSTRACT

A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.

13.
Cancer Discov ; 8(9): 1087-1095, 2018 09.
Article in English | MEDLINE | ID: mdl-29802158

ABSTRACT

We used whole-genome and transcriptome sequencing to identify clinically actionable genomic alterations in young adults with pancreatic ductal adenocarcinoma (PDAC). Molecular characterization of 17 patients with PDAC enrolled in a precision oncology program revealed gene fusions amenable to pharmacologic inhibition by small-molecule tyrosine kinase inhibitors in all patients with KRAS wild-type (KRASWT) tumors (4 of 17). These alterations included recurrent NRG1 rearrangements predicted to drive PDAC development through aberrant ERBB receptor-mediated signaling, and pharmacologic ERBB inhibition resulted in clinical improvement and remission of liver metastases in 2 patients with NRG1-rearranged tumors that had proved resistant to standard treatment. Our findings demonstrate that systematic screening of KRASWT tumors for oncogenic fusion genes will substantially improve the therapeutic prospects for a sizeable fraction of patients with PDAC.Significance: Advanced PDAC is a malignancy with few treatment options that lacks molecular mechanism-based therapies. Our study uncovers recurrent gene rearrangements such as NRG1 fusions as disease-driving events in KRASwt tumors, thereby providing novel insights into oncogenic signaling and new therapeutic options in this entity. Cancer Discov; 8(9); 1087-95. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Liver Neoplasms/drug therapy , Neuregulin-1/genetics , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins p21(ras)/genetics , Adult , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Female , Gene Expression Profiling/methods , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Male , Mice , Middle Aged , Oncogene Proteins, Fusion/genetics , Pancreatic Neoplasms/genetics , Precision Medicine , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/pharmacology , Translocation, Genetic , Treatment Outcome , Whole Genome Sequencing/methods , Xenograft Model Antitumor Assays , Young Adult
14.
Oncotarget ; 9(14): 11734-11751, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29545933

ABSTRACT

Smoking is associated with increased risk and poorer prognosis of pancreatic ductal adenocarcinoma (PDAC). Nicotine acts through cholinergic nicotinic receptors, preferentially α7 (CHRNA7) that also binds the endogenous ligand SLURP1 (Secreted Ly-6/uPAR-Related Protein 1). The clinical significance of SLURP1 and its interaction with nicotine in PDAC are unclear. We detected similar levels of SLURP1 in sera from healthy donors and patients with chronic pancreatitis or PDAC; higher preoperative values were associated with significantly better survival in patients with resected tumors. Pancreatic tissue was not a source of circulating SLURP1 but contained diverse CHRNA7-expressing cells, preferentially epithelial and immune, whereas stromal stellate cells and a quarter of the tumor cells lacked CHRNA7. The CHRNA7 mRNA levels were decreased in PDAC, and CHRNA7high-PDAC patients lived longer. In CHRNA7high COLO357 and PANC-1 cultures, opposing activities of SLURP1 (anti-malignant/CHRNA7-dependent) and nicotine (pro-malignant/CHRNA7-infidel) were exerted without reciprocally interfering with receptor binding or downstream signaling. These data suggested that the ligands act independently and abolish each other's effects through a mechanism resembling functional antagonism. Thus, SLURP1 might represent an inborn anti-PDAC defense being sensitive to and counteracting nicotine. Boosting SLURP1-CHRNA7 interaction might represent a novel strategy for treatment in high-risk individuals, i.e., smokers with pancreatic cancer.

15.
Int J Cancer ; 142(5): 1010-1021, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28983920

ABSTRACT

Transcriptional profiling was performed on 452 RNA preparations isolated from various types of pancreatic tissue from tumour patients and healthy donors, with a particular focus on peritumoral samples. Pancreatic ductal adenocarcinomas (PDAC) and cystic tumours were most different in these non-tumorous tissues surrounding them, whereas the actual tumours exhibited rather similar transcript patterns. The environment of cystic tumours was transcriptionally nearly identical to normal pancreas tissue. In contrast, the tissue around PDAC behaved a lot like the tumour, indicating some kind of field defect, while showing far less molecular resemblance to both chronic pancreatitis and healthy tissue. This suggests that the major pathogenic difference between cystic and ductal tumours may be due to their cellular environment rather than the few variations between the tumours. Lack of correlation between DNA methylation and transcript levels makes it unlikely that the observed field defect in the peritumoral tissue of PDAC is controlled to a large extent by such epigenetic regulation. Functionally, a strikingly large number of autophagy-related transcripts was changed in both PDAC and its peritumoral tissue, but not in other pancreatic tumours. A transcription signature of 15 autophagy-related genes was established that permits a prognosis of survival with high accuracy and indicates the role of autophagy in tumour biology.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Cyst/genetics , Pancreatic Neoplasms/genetics , Pancreatitis, Chronic/genetics , Tumor Microenvironment/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Pancreatic Ductal/pathology , DNA Methylation , Disease Progression , Female , Follow-Up Studies , Gene Expression Profiling , Gene Regulatory Networks , Humans , Male , Middle Aged , Pancreatic Cyst/pathology , Pancreatic Neoplasms/pathology , Pancreatitis, Chronic/pathology , Prognosis , Survival Rate , Young Adult
16.
Oncotarget ; 8(64): 108223-108237, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29296236

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) continues to carry the lowest survival rates among all solid tumors. A marked resistance against available therapies, late clinical presentation and insufficient means for early diagnosis contribute to the dismal prognosis. Novel biomarkers are thus required to aid treatment decisions and improve patient outcomes. We describe here a multi-omics molecular platform that allows for the first time to simultaneously analyze miRNA and mRNA expression patterns from minimal amounts of biopsy material on a single microfluidic TaqMan Array card. Expression profiles were generated from 113 prospectively collected fine needle aspiration biopsies (FNAB) from patients undergoing surgery for suspect masses in the pancreas. Molecular classifiers were constructed using support vector machines, and rigorously evaluated for diagnostic performance using 10×10fold cross validation. The final combined miRNA/mRNA classifier demonstrated a sensitivity of 91.7%, a specificity of 94.5%, and an overall diagnostic accuracy of 93.0% for the differentiation between PDAC and benign pancreatic masses, clearly outperfoming miRNA-only classifiers. The classification algorithm also performed very well in the diagnosis of other types of solid tumors (acinar cell carcinomas, ampullary cancer and distal bile duct carcinomas), but was less suited for the diagnostic analysis of cystic lesions. We thus demonstrate that simultaneous analysis of miRNA and mRNA biomarkers from FNAB samples using multi-omics TaqMan Array cards is suitable to differentiate suspect solid pancreatic masses with high precision.

17.
Gastroenterology ; 151(6): 1218-1231, 2016 12.
Article in English | MEDLINE | ID: mdl-27578530

ABSTRACT

BACKGROUND & AIMS: Incidence of and mortality from pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, are almost equivalent, so better treatments are needed. We studied gene expression profiles of PDACs and the functions of genes with altered expression to identify new therapeutic targets. METHODS: We performed microarray analysis to analyze gene expression profiles of 195 PDAC and 41 non-tumor pancreatic tissue samples. We undertook an extensive analysis of the PDAC transcriptome by superimposing interaction networks of proteins encoded by aberrantly expressed genes over signaling pathways associated with PDAC development to identify factors that might alter regulation of these pathways during tumor progression. We performed tissue microarray analysis to verify changes in expression of candidate protein using an independent set of 152 samples (40 nontumor pancreatic tissues, 63 PDAC sections, and 49 chronic pancreatitis samples). We validated the functional relevance of the candidate molecule using RNA interference or pharmacologic inhibitors in pancreatic cancer cell lines and analyses of xenograft tumors in mice. RESULTS: In an analysis of 38,276 human genes and loci, we identified 1676 genes that were significantly up-regulated and 1166 genes that were significantly down-regulated in PDAC compared with nontumor pancreatic tissues. One gene that was up-regulated and associated with multiple signaling pathways that are dysregulated in PDAC was G protein subunit αi2, which has not been previously associated with PDAC. G protein subunit αi2 mediates the effects of dopamine receptor D2 (DRD2) on cyclic adenosine monophosphate signaling; PDAC tissues had a slight but significant increase in DRD2 messenger RNA. Levels of DRD2 protein were substantially increased in PDACs, compared with non-tumor tissues, in tissue microarray analyses. RNA interference knockdown of DRD2 or inhibition with pharmacologic antagonists (pimozide and haloperidol) reduced proliferation of pancreatic cancer cells, induced endoplasmic reticulum stress and apoptosis, and reduced cell migration. RNA interference knockdown of DRD2 in pancreatic tumor cells reduced growth of xenograft tumors in mice, and administration of the DRD2 inhibitor haloperidol to mice with orthotopic xenograft tumors reduced final tumor size and metastasis. CONCLUSIONS: In gene expression profile analysis of PDAC samples, we found the DRD2 signaling pathway to be activated. Inhibition of DRD2 in pancreatic cancer cells reduced proliferation and migration, and slowed growth of xenograft tumors in mice. DRD2 antagonists routinely used for management of schizophrenia might be tested in patients with pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Receptors, Dopamine D2/genetics , Adult , Aged , Aged, 80 and over , Animals , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/secondary , Case-Control Studies , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dopamine D2 Receptor Antagonists/pharmacology , Endoplasmic Reticulum Stress/drug effects , Female , Gene Knockdown Techniques , Haloperidol/pharmacology , Humans , Male , Mice , Middle Aged , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Pimozide/pharmacology , RNA, Small Interfering , Receptors, Dopamine D2/metabolism , Signal Transduction , Transcriptome , Unfolded Protein Response/drug effects , Up-Regulation , eIF-2 Kinase/metabolism
18.
Pancreas ; 45(10): 1452-1460, 2016 11.
Article in English | MEDLINE | ID: mdl-27518460

ABSTRACT

OBJECTIVES: Our aim was to establish and characterize a novel pancreatic ductal adenocarcinoma cell line from a patient in whom the origin of the invasive carcinoma could be traced back to the intraductal papillary mucinous neoplasm (IPMN) precursor lesion. METHODS: The primary patient-derived tumor was propagated in immunocompromised mice for 2 generations and used to establish a continuous in vitro culture termed ASAN-PaCa. Transplantation to fertilized chicken eggs confirmed the tumorigenic potential in vivo. Molecular analyses included karyotyping, next-generation genomic sequencing, expression analysis of marker proteins, and mucin-profiling. RESULTS: The analysis of marker proteins confirmed the epithelial nature of the established cell line, and revealed that the expression of the mucin MUC1 was higher than that of MUC2 and MUC5AC. ASAN-PaCa cells showed rapid in vitro and in vivo growth and multiple chromosomal aberrations. They harbored mutations in KRAS (Q61H), TP53 (Y220C), and RNF43 (I47V and L418M) but lacked either IPMN-specific GNAS or presumed pancreatic ductal adenocarcinoma-driving mutations in KRAS (codons 12/13), SMAD, and CDKN2A genes. CONCLUSIONS: ASAN-PaCa cell line represents a novel preclinical model of pancreatic adenocarcinoma arising in the background of IPMN, and offers an opportunity to study how further introduction of known driver mutations might contribute to pancreatic carcinogenesis.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Cell Line , Humans , Mice , Mucin-2
19.
Cancer Res ; 76(14): 4149-59, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27216198

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by very early metastasis, suggesting the hypothesis that metastasis-associated changes may occur prior to actual tumor formation. In this study, we identified miR-192 as an epigenetically regulated suppressor gene with predictive value in this disease. miR-192 was downregulated by promoter methylation in both PDAC and chronic pancreatitis, the latter of which is a major risk factor for the development of PDAC. Functional studies in vitro and in vivo in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial-mesenchymal transition. Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1 that is encoding the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. Notably, our data suggested that invasive capacity was altered even before neoplastic transformation occurred, as triggered by miR-192 downregulation. Overall, our results highlighted a role for miR-192 in explaining the early metastatic behavior of PDAC and suggested its relevance as a target to develop for early diagnostics and therapy. Cancer Res; 76(14); 4149-59. ©2016 AACR.


Subject(s)
Carcinoma, Pancreatic Ductal/etiology , Epigenesis, Genetic , MicroRNAs/physiology , Pancreatic Neoplasms/etiology , Animals , Cadherins/analysis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , DNA Methylation , Disease Progression , Down-Regulation , Epithelial-Mesenchymal Transition , Humans , Mice , Neoplasm Invasiveness , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Plasminogen Activator Inhibitor 1/genetics , Vimentin/analysis
20.
Nat Med ; 22(3): 278-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26855150

ABSTRACT

Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cytochrome P-450 CYP3A/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-alpha/metabolism , Keratins, Hair-Specific/metabolism , Keratins, Type II/metabolism , Pancreatic Neoplasms/genetics , Aged , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Dasatinib/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Female , Hepatocyte Nuclear Factor 4/metabolism , Humans , Immunohistochemistry , Male , Mice, Inbred NOD , Middle Aged , Neoplasm Transplantation , Paclitaxel/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pregnane X Receptor , Prognosis , Protein Kinase Inhibitors/therapeutic use , Receptors, Steroid/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...