Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 22(4): 143, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33903988

ABSTRACT

The objective of this research was to assess the applicability of manometric temperature measurement (MTM) and SMART™ for cycle development and monitoring of critical product and process parameters in a mini-freeze dryer using a small set of seven vials. Freeze drying cycles were developed using SMART™ which automatically defines and adapts process parameters based on input data and MTM feedback information. The freeze drying behavior and product characteristics of an amorphous model system were studied at varying wall temperature control settings of the cylindrical wall surrounding the shelf in the mini-freeze dryer. Calculated product temperature profiles were similar for all different wall temperature settings during the MTM-SMART™ runs and in good agreement with the temperatures measured by thermocouples. Product resistance profiles showed uniformity in all of the runs conducted in the mini-freeze dryer, but absolute values were slightly lower compared to values determined by MTM in a LyoStar™ pilot-scale freeze dryer. The resulting cakes exhibited comparable residual moisture content and optical appearance to the products obtained in the larger freeze dryer. An increase in intra-vial heterogeneity was found for the pore morphology in the cycle with deactivated wall temperature control in the mini-freeze dryer. SMART™ cycle design and product attributes were reproducible and a minimum load of seven 10R vials was identified for more accurate MTM values. MTM-SMART™ runs suggested, that in case of the wall temperature following the product temperature of the center vial, product temperatures differ only slightly from those in the LyoStar™ freeze dryer.


Subject(s)
Freeze Drying/instrumentation , Manometry/methods , Technology, Pharmaceutical/instrumentation , Temperature
2.
J Pharm Sci ; 109(10): 3035-3044, 2020 10.
Article in English | MEDLINE | ID: mdl-32652082

ABSTRACT

This case study proposes a development strategy for the SynchroFreeze vacuum-induced surface freezing technology for challenging high fill volume model systems. Critical steps during the development of a nucleation protocol are discussed as an example approach for implementing vacuum-induced surface freezing for high fill volume products. Slow pressure ramps and hold steps at adequate pressures have been found to be crucial for avoiding defects caused by either excessive outgassing or incomplete degassing. The evaporative mass loss during the SynchroFreeze procedure is characterized and thermal gradients during nucleation for several model systems with concentrations in the 50-400 mg/mL range are analyzed. The technology results in a measurable mass loss that may be relevant for low fill volume formulations. Thermal data show a pronounced temperature gradient throughout the entire product solution during nucleation by vacuum-induced surface freezing. The formulation composition, concentration, and shelf temperature have been shown to influence this temperature gradient. Reliable nucleation was achieved for sucrose formulations with concentrations up to 200 mg/mL at shelf temperatures minimally below the equilibrium freezing point.


Subject(s)
Freezing , Freeze Drying , Temperature , Transition Temperature , Vacuum
3.
J Pharm Sci ; 109(9): 2746-2756, 2020 09.
Article in English | MEDLINE | ID: mdl-32497596

ABSTRACT

The purpose of this study was to investigate the impact of shelf temperature modifications during application of controlled ice nucleation techniques on process data and critical product quality attributes for a challenging, high-concentration and high-fill volume amorphous model system. Different freezing programs were applied and compared for the mechanistically different depressurization and vacuum-induced surface freezing techniques. Critical process data, such as product temperature and drying time, were analyzed. The final products were characterized with a focus on product morphology, residual moisture, reconstitution time and stability. The shelf temperature directly after primary nucleation showed a major influence on process performance and product quality attributes, with an isothermal hold step at an intermediate temperature leading to optimal results in terms of homogeneity and reduction of product temperatures and drying time for the model system used. The different controlled ice nucleation techniques led to significantly different results in terms of product morphology and process data, showing that the two mechanistically different controlled nucleation techniques are not interchangeable.


Subject(s)
Desiccation , Ice , Freeze Drying , Freezing , Temperature
4.
J Pharm Sci ; 105(10): 3123-3135, 2016 10.
Article in English | MEDLINE | ID: mdl-27506270

ABSTRACT

Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride.


Subject(s)
Arginine/chemistry , Drug Compounding/methods , Mannitol/chemistry , Chemistry, Pharmaceutical , Crystallization , Freeze Drying/methods , Ions , X-Ray Diffraction/methods
5.
J Pharm Sci ; 104(12): 4241-4256, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26422647

ABSTRACT

We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability.


Subject(s)
Arginine/chemistry , Chlorides/chemistry , Proteins/chemistry , Sucrose/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Cold Temperature , Crystallization/methods , Drug Stability , Excipients/chemistry , Freeze Drying/methods , Protein Stability , Transition Temperature
6.
J Pharm Sci ; 104(7): 2345-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25994980

ABSTRACT

The objective of this study was to investigate product performance of freeze dried l-arginine/sucrose-based formulations under variation of excipient weight ratios, l-arginine counter ions and formulation pH as a matrix to stabilize a therapeutic monoclonal antibody (MAb) during freeze drying and shelf life. Protein and placebo formulations were lyophilized at aggressive primary drying conditions and key attributes of the freeze dried solids were correlated to their thermal properties and critical formulation temperature. Stability (physical) during processing and long-term storage of the MAb in different formulations was assessed by SE-HPLC. Thermal properties of the mixtures were greatly affected by the type of l-arginine counter ion. High glass transition temperatures were achieved by adding multivalent acids, whereas the temperature values significantly decreased in the presence of chloride ions. All mixtures were stable during freeze drying, but storage stability varied for the different preparations and counter ions. For l-arginine-based formulations, the protein was most stable in the presence of chloride ion, showing no obvious correlation to estimated global mobility of the glass. Besides drying behavior and thermal properties of the freeze dried solids, the counter ion of l-arginine must be considered relevant for protein shelf life stability.


Subject(s)
Arginine/chemistry , Proteins/chemistry , Sucrose/chemistry , Chemistry, Pharmaceutical/methods , Drug Stability , Freeze Drying/methods , Glass/chemistry , Ions/chemistry , Protein Stability , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...