Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 178(3): 337-340, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28981759

ABSTRACT

Radiophotoluminescence signal of LiF crystals was found to be sufficiently strong to visualize tracks of a single charged particle. This was achieved with a wide-field fluorescent microscope equipped with a ×100 objective and LiF single crystals grown with the Czochralski method at IFJ PAN. The tracks of alpha particles, protons, as well as products of 6Li(n,α)3H reaction with thermal neutrons (moderated Pu/Be source), were observed. These encouraging results are the first steps towards practical use of LiF as fluorescent nuclear track detectors. The most promising dosimetric application seems to be neutron measurements.


Subject(s)
Fluorides/chemistry , Lithium Compounds/chemistry , Radiometry/methods , Alpha Particles , Luminescence , Microscopy, Fluorescence , Neutrons , Protons
2.
Radiat Prot Dosimetry ; 178(3): 333-336, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28981828

ABSTRACT

Lithium fluoride (LiF) is one of the most common thermoluminescent phosphors routinely used in radiation protection services. Another advantageous property of LiF is radiophotoluminescence, whose occurs after its irradiation due to the creation of color centers. Excitation of LiF samples with a blue light causes the emission of photoluminescence, which spectrum consists of two peaks at ~520 and ~670 nm. The work was focused on imaging of Bragg peaks of proton beams routinely applied at the proton eye radiotherapy facility operating at the Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN) in Krakow by the measurement of the fluorescence light in LiF crystals excited with a 445 nm blue light after their previous irradiation with the proton beams of energies of 28, 30, 40 and 50 MeV. The range of proton beams in LiF crystals for different energies was calculated by Monte Carlo simulations.


Subject(s)
Fluorides/chemistry , Lithium Compounds/chemistry , Proton Therapy , Radiometry/instrumentation , Eye/radiation effects , Luminescence , Monte Carlo Method , Poland
3.
Appl Radiat Isot ; 104: 197-202, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188687

ABSTRACT

In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.


Subject(s)
Erbium/chemistry , Optical Fibers , Silicon Dioxide/chemistry , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Dose-Response Relationship, Radiation , Equipment Design , Equipment Failure Analysis , Erbium/radiation effects , Materials Testing , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , Silicon Dioxide/radiation effects , X-Rays
4.
Appl Radiat Isot ; 98: 80-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25644081

ABSTRACT

The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21MeV electrons and 10MV photons. The CFs were irradiated in the dose range of 0.2-10Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21MeV electrons than to 10MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21MeV electrons and 10MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21MeV) caused a shift of glow peak by 7-13°C to the higher temperature region compared with photons radiation (10MV). Our Tm-doped fibers seem to give high TL response after 21MeV electrons, which gives around 2 times higher peak integral as compared with 10MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF.

SELECTION OF CITATIONS
SEARCH DETAIL
...