Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 37(3): 741-754, 2018 03.
Article in English | MEDLINE | ID: mdl-28574344

ABSTRACT

The use of synthetic sequences is one of the most promising tools for advanced in silico evaluation of the quantification of cardiac deformation and strain through 3-D ultrasound (US) and magnetic resonance (MR) imaging. In this paper, we propose the first simulation framework which allows the generation of realistic 3-D synthetic cardiac US and MR (both cine and tagging) image sequences from the same virtual patient. A state-of-the-art electromechanical (E/M) model was exploited for simulating groundtruth cardiac motion fields ranging from healthy to various pathological cases, including both ventricular dyssynchrony and myocardial ischemia. The E/M groundtruth along with template MR/US images and physical simulators were combined in a unified framework for generating synthetic data. We efficiently merged several warping strategies to keep the full control of myocardial deformations while preserving realistic image texture. In total, we generated 18 virtual patients, each with synthetic 3-D US, cine MR, and tagged MR sequences. The simulated images were evaluated both qualitatively by showing realistic textures and quantitatively by observing myocardial intensity distributions similar to real data. In particular, the US simulation showed a smoother myocardium/background interface than the state-of-the-art. We also assessed the mechanical properties. The pathological subjects were discriminated from the healthy ones by both global indexes (ejection fraction and the global circumferential strain) and regional strain curves. The synthetic database is comprehensive in terms of both pathology and modality, and has a level of realism sufficient for validation purposes. All the 90 sequences are made publicly available to the research community via an open-access database.


Subject(s)
Computer Simulation , Echocardiography/methods , Magnetic Resonance Imaging/methods , Models, Cardiovascular , Algorithms , Humans , Movement/physiology , Phantoms, Imaging
2.
IEEE Trans Med Imaging ; 34(7): 1436-1451, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25643402

ABSTRACT

Quantification of cardiac deformation and strain with 3D ultrasound takes considerable research efforts. Nevertheless, a widespread use of these techniques in clinical practice is still held back due to the lack of a solid verification process to quantify and compare performance. In this context, the use of fully synthetic sequences has become an established tool for initial in silico evaluation. Nevertheless, the realism of existing simulation techniques is still too limited to represent reliable benchmarking data. Moreover, the fact that different centers typically make use of in-house developed simulation pipelines makes a fair comparison difficult. In this context, this paper introduces a novel pipeline for the generation of synthetic 3D cardiac ultrasound image sequences. State-of-the art solutions in the fields of electromechanical modeling and ultrasound simulation are combined within an original framework that exploits a real ultrasound recording to learn and simulate realistic speckle textures. The simulated images show typical artifacts that make motion tracking in ultrasound challenging. The ground-truth displacement field is available voxelwise and is fully controlled by the electromechanical model. By progressively modifying mechanical and ultrasound parameters, the sensitivity of 3D strain algorithms to pathology and image properties can be evaluated. The proposed pipeline is used to generate an initial library of 8 sequences including healthy and pathological cases, which is made freely accessible to the research community via our project web-page.

SELECTION OF CITATIONS
SEARCH DETAIL
...