Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Microgravity ; 2: 16019, 2016.
Article in English | MEDLINE | ID: mdl-28725731

ABSTRACT

Astronauts on lengthy voyages will be exposed to an environment of microgravity and ionizing radiation that may have adverse effects on physical abilities, mood, and cognitive functioning. However, little is known about the long-term effects of combined microgravity and low-dose radiation. We exposed mice to gamma radiation using a cobalt-57 plate (0.01 cGy/h for a total dose of 0.04 Gy), hindlimb unloading to simulate microgravity, or a combination of both for 3 weeks. Mice then underwent a behavioral test battery after 1 week, 1 month, 4 months, and 8 months to assess sensorimotor coordination/balance (rotarod), activity levels (open field), learned helplessness/depression-like behavior (tail suspension test), risk-taking (elevated zero maze), and spatial learning/memory (water maze). Aquaporin-4 (AQP4) expression was assessed in the brain after behavioral testing to determine blood-brain barrier (BBB) integrity. Mice that received unloading spent significantly more time in the exposed portions of the elevated zero maze, were hypoactive in the open field, and spent less time struggling on the tail suspension test than mice that did not receive unloading. Mice in the combination group expressed more AQP4 immunoactivity than controls. Elevated zero maze and AQP4 data were correlated. No differences were seen on the water maze or rotarod, and no radiation-only effects were observed. These results suggest that microgravity may lead to changes in exploratory/risk-taking behaviors in the absence of other sensorimotor or cognitive deficits and that combined microgravity and a chronic, low dose of gamma radiation may lead to BBB dysfunction.

SELECTION OF CITATIONS
SEARCH DETAIL
...