Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 144(9): 1674-1686, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28289130

ABSTRACT

In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Chromosome Segregation , Cytokinesis , Kinesins/metabolism , Microtubules/metabolism , Oocytes/cytology , Oocytes/metabolism , HeLa Cells , Humans , Imaging, Three-Dimensional , Meiosis , Spindle Apparatus/metabolism
2.
Development ; 143(19): 3604-3614, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27578779

ABSTRACT

In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing is required for meiotic spindle assembly is unclear. Here, we show that the essential role of MEI-2 is to confer MT binding to Katanin, which in turn stimulates the ATPase activity of MEI-1, leading to MT severing. To test directly the contribution of MT severing to meiotic spindle assembly, we engineered Katanin variants that retained MT binding and MT bundling activities but that were inactive for MT severing. In vivo analysis of these variants showed disorganized microtubules that lacked focused spindle poles reminiscent of the Katanin loss-of-function phenotype, demonstrating that the MT-severing activity is essential for meiotic spindle assembly in C. elegans Overall, our results reveal the essential role of MEI-2 and provide the first direct evidence supporting an essential role of MT severing in meiotic spindle assembly in C. elegans.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Microtubules/metabolism , Spindle Apparatus/metabolism , Adenosine Triphosphatases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , Katanin , Meiosis/genetics , Meiosis/physiology , Microtubules/genetics , Spindle Apparatus/genetics
3.
EMBO J ; 31(16): 3468-79, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22820946

ABSTRACT

The process of Sister Chromosome Cohesion (SCC), which holds together sister chromatids upon replication, is essential for chromosome segregation and DNA repair in eukaryotic cells. Although cohesion at the molecular level has never been described in E. coli, previous studies have reported that sister sequences remain co-localized for a period after their replication. Here, we have developed a new genetic recombination assay that probes the ability of newly replicated chromosome loci to interact physically. We show that Sister Chromatid Interaction (SCI) occurs exclusively within a limited time frame after replication. Importantly, we could differentiate sister cohesion and co-localization since factors such as MatP and MukB that reduced the co-localization of markers had no effect on molecular cohesion. The frequency of sister chromatid interactions were modulated by the activity of Topo-IV, revealing that DNA topology modulates cohesion at the molecular scale in bacteria.


Subject(s)
Chromatids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Sister Chromatid Exchange , DNA Replication , DNA Topoisomerase IV/metabolism , Models, Biological , Time Factors
4.
EMBO J ; 31(14): 3198-211, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22580828

ABSTRACT

Initiation of chromosome segregation in bacteria is achieved by proteins acting near the origin of replication. Here, we report that the precise choreography of the terminus region of the Escherichia coli chromosome is also tightly controlled. The segregation of the terminus (Ter) macrodomain (MD) involves the structuring factor MatP. We characterized that migration of the Ter MD from the new pole to mid-cell and its subsequent persistent localization at mid-cell relies on several processes. First, the replication of the Ter DNA is concomitant with its recruitment from the new pole to mid-cell in a sequential order correlated with the position on the genetic map. Second, using a strain carrying a linear chromosome with the Ter MD split in two parts, we show that replisomes are repositioned at mid-cell when replication of the Ter occurs. Third, we demonstrate that anchoring the Ter MD at mid-cell depends on the specific interaction of MatP with the division apparatus-associated protein ZapB. Our results reveal how segregation of the Ter MD is integrated in the cell-cycle control.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Division/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Escherichia coli , Escherichia coli Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...