Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pathol Lab Med ; 144(2): 229-239, 2020 02.
Article in English | MEDLINE | ID: mdl-31219342

ABSTRACT

CONTEXT.­: The Logical Observation Identifiers Names and Codes (LOINC) system is supposed to facilitate interoperability, and it is the federally required code for exchanging laboratory data. OBJECTIVE.­: To provide an overview of LOINC, emerging issues related to its use, and areas relevant to the pathology laboratory, including the subtleties of test code selection and importance of mapping the correct codes to local test menus. DATA SOURCES.­: This review is based on peer-reviewed literature, federal regulations, working group reports, the LOINC database (version 2.65), experience using LOINC in the laboratory at several large health care systems, and insight from laboratory information system vendors. CONCLUSIONS.­: The current LOINC database contains more than 55 000 numeric codes specific for laboratory tests. Each record in the LOINC database includes 6 major axes/parts for the unique specification of each individual observation or measurement. Assigning LOINC codes to a laboratory's test menu should be a defined process. In some cases, LOINC can aid in distinguishing laboratory data among different information systems, whereby such benefits are not achievable by relying on the laboratory test name alone. Criticisms of LOINC include the complexity and resource-intensive process of selecting the most correct code for each laboratory test, the real-world experience that these codes are not uniformly assigned across laboratories, and that 2 tests that may have the same appropriately assigned LOINC code may not necessarily have equivalency to permit interoperability of their result data. The coding system's limitations, which subsequently reduce the potential utility of LOINC, are poorly understood outside of the laboratory.


Subject(s)
Clinical Laboratory Information Systems , Laboratories , Logical Observation Identifiers Names and Codes , Databases, Factual , Humans
2.
JAMIA Open ; 2(1): 197-204, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30944914

ABSTRACT

OBJECTIVES: We aimed to gain a better understanding of how standardization of laboratory data can impact predictive model performance in multi-site datasets. We hypothesized that standardizing local laboratory codes to logical observation identifiers names and codes (LOINC) would produce predictive models that significantly outperform those learned utilizing local laboratory codes. MATERIALS AND METHODS: We predicted 30-day hospital readmission for a set of heart failure-specific visits to 13 hospitals from 2008 to 2012. Laboratory test results were extracted and then manually cleaned and mapped to LOINC. We extracted features to summarize laboratory data for each patient and used a training dataset (2008-2011) to learn models using a variety of feature selection techniques and classifiers. We evaluated our hypothesis by comparing model performance on an independent test dataset (2012). RESULTS: Models that utilized LOINC performed significantly better than models that utilized local laboratory test codes, regardless of the feature selection technique and classifier approach used. DISCUSSION AND CONCLUSION: We quantitatively demonstrated the positive impact of standardizing multi-site laboratory data to LOINC prior to use in predictive models. We used our findings to argue for the need for detailed reporting of data standardization procedures in predictive modeling, especially in studies leveraging multi-site datasets extracted from electronic health records.

SELECTION OF CITATIONS
SEARCH DETAIL
...