Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 5: 4422, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-25034613

ABSTRACT

The introduction of femto-chemistry has made it a primary goal to follow the nuclear and electronic evolution of a molecule in time and space as it undergoes a chemical reaction. Using Coulomb Explosion Imaging, we have shot the first high-resolution molecular movie of a to and fro isomerization process in the acetylene cation. So far, this kind of phenomenon could only be observed using vacuum ultraviolet light from a free-electron laser. Here we show that 266 nm ultrashort laser pulses are capable of initiating rich dynamics through multiphoton ionization. With our generally applicable tabletop approach that can be used for other small organic molecules, we have investigated two basic chemical reactions simultaneously: proton migration and C=C bond breaking, triggered by multiphoton ionization. The experimental results are in excellent agreement with the timescales and relaxation pathways predicted by new and quantitative ab initio trajectory simulations.

2.
Phys Rev Lett ; 110(25): 253901, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23829737

ABSTRACT

Low-frequency currents induced by ultrashort laser-driven ionization can emit extremely broadband, single-cycle terahertz pulses. We present a model that predicts a strong wavelength dependence of the THz emission in good agreement with our experimental study. This reveals that the combined effects of plasma currents rising proportionally to the square of the pump wavelength and wavelength-dependent focusing conditions lead to 30 times higher THz emission at 1800 nm compared to an 800 nm wavelength. Unrivaled single-cycle electric field strengths of 4.4 MV/cm are achieved with this compact table-top setup.

3.
J Chem Phys ; 138(20): 204311, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23742479

ABSTRACT

We have made a series of measurements, as a function of pulse duration, of ionization and fragmentation of the asymmetric molecule N2O in intense femtosecond laser radiation. The pulse length was varied from 7 fs to 500 fs with intensity ranging from 4 × 10(15) to 2.5 × 10(14) W∕cm(2). Time and position sensitive detection allows us to observe all fragments in coincidence. By representing the final dissociation geometry with Dalitz plots, we can identify the underlying breakup dynamics. We observe for the first time that there are two stepwise dissociation pathways for N2O(3+): (1) N2O(3+) → N(+) + NO(2+) → N(+) + N(+) + O(+) and (2) N2O(3+) → N2 (2+) + O(+) → N(+) + N(+) + O(+) as well as one for N2O(4+) → N(2+) + NO(2+) → N(2+) + N(+) + O(+). The N2 (2+) stepwise channel is suppressed for longer pulse length, a phenomenon which we attribute to the influence which the structure of the 3+ potential has on the dissociating wave packet propagation. Finally, by observing the total kinetic energy released for each channel as a function of pulse duration, we show the increasing importance of charge resonance enhanced ionization for channels higher than 3+.

4.
Opt Lett ; 34(12): 1894-6, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19529739

ABSTRACT

We report generation of 400 microJ, 13.1 fs, 1425 nm optical parametric amplifier laser pulses. Spectral broadening of a 100 Hz optical parametric amplifier laser source is achieved by self-phase modulation in an argon-filled hollow-core fiber, and dispersion compensation is performed using chirped mirrors. This laser source will be useful for ultrafast time-resolved molecular orbital tomography.

SELECTION OF CITATIONS
SEARCH DETAIL
...