Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 70: 103054, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309122

ABSTRACT

Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Animals , Mice , Plaque, Atherosclerotic/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Succinates/pharmacology , Macrophages/metabolism
2.
EMBO Mol Med ; 6(9): 1124-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25007801

ABSTRACT

Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease.


Subject(s)
Atherosclerosis/genetics , Histone Deacetylases/physiology , Macrophages/physiology , Acetylation , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Collagen/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Lipid Metabolism/genetics , Mice, Inbred C57BL , Mice, Knockout , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...