Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 8879, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891995

ABSTRACT

Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (-)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.


Subject(s)
Bees/virology , DNA Viruses/classification , DNA Viruses/genetics , Ecosystem , RNA Viruses/classification , RNA Viruses/genetics , Animals , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Nucleic Acid Amplification Techniques , Sequence Analysis, DNA
2.
PLoS One ; 6(11): e27785, 2011.
Article in English | MEDLINE | ID: mdl-22114695

ABSTRACT

Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.


Subject(s)
Biodiversity , Ecosystem , Human Activities , Trees , Animals , Behavior, Animal , Humans , Models, Theoretical , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...