Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33746556

ABSTRACT

Photolysis of nitrous acid (HONO) is recognized as an early-morning source of OH radicals in the urban air. During the Korea-US air quality (KORUS-AQ) campaign, HONO was measured using quantum cascade - tunable infrared laser differential absorption spectrometer (QC-TILDAS) at Olympic Park in Seoul from 17 May, 2016 to 14 June, 2016. The HONO concentration was in the range of 0.07-3.46 ppbv, with an average of 0.93 ppbv. Moreover, it remained high from 00:00-05:00 LST. During this time, the mean concentration was higher during the high-O3 episodes (1.82 ppbv) than the non-episodes (1.20 ppbv). In the morning, the OH radicals that were produced from HONO photolysis were 50% higher (0.95 pptv) during the high-O3 episodes than the non-episodes. Diurnal variations in HOx and O3 concentrations were simulated by the F0AM model, which revealed a difference of ~20 ppbv in the daily maximum O3 concentrations between the high-O3 episodes and non-episodes. Furthermore, the HONO concentration increased with an increase in relative humidity (RH) up to 80%; the highest HONO was associated with the top 10% NO2 in each RH group, confirming that NO2 is one of the main precursors of HONO. At night, the conversion ratio of NO2 to HONO was estimated to be 0.88×10-2 h-1; this ratio was found to increase with an increase in RH. The Aitken mode particles (30-120 nm), which act as catalyst surfaces, exhibited a similar tendency with a conversion ratio that increased along with RH, indicating the coupling of surfaces with HONO conversion. Using an artificial neural network (ANN) model, HONO concentrations were successfully simulated with measured variables (r2 = 0.66 as an average of five models). Among these variables, NOx, aerosol surface area, and RH were found to be the main factors affecting the ambient HONO concentrations. The results reveal that RH facilitates the conversion of NO2 to HONO by constraining the availability of aerosol surfaces. This study demonstrates the coupling of HONO with the HOx-O3 cycle in the Seoul Metropolitan Area (SMA) and provides practical evidence of the heterogeneous formation of HONO by employing the ANN model.

2.
Article in English | MEDLINE | ID: mdl-34522698

ABSTRACT

To understand the characteristics of air quality in the Seoul Metropolitan Area, intensive measurements were conducted under the Korea-United States Air Quality (KORUS-AQ) campaign. Trace gases such as O3, NOx, NOy, SO2, CO, and volatile organic compounds (VOCs), photochemical byproducts such as H2O2 and HCHO, aerosol species, and meteorological variables including planetary boundary layer height were simultaneously measured at Olympic Park in Seoul. During the measurement period, high O3 episodes that exceeded the 90 ppbv hourly maximum occurred on 14 days under four distinct synoptic meteorological conditions. Furthermore, local circulation such as land-sea breeze and diurnal evolution of the boundary layer were crucial in determining the concentrations of precursor gases, including NOx and VOC as well as O3. During such episodes, the nighttime NOx and VOC and daytime UV levels were higher compared to non-episode days. The overall precursor levels and photochemical activity were represented fairly well by variations in the HCHO, which peaked in the morning during the high O3 episodes. This study revealed that toluene was the most abundant VOC in Seoul, and its concentration increased greatly with NOx due to the large local influence under stagnant conditions. When O3 was highly elevated concurrently with PM2.5 under dominant westerlies, NOx and VOCs were relatively lower and CO was noticeably higher than in other episodes. Additionally, the O3 production efficiency was the highest due to a low NOx with the highest NOz/NOy ratio among the four episodes. When westerlies were dominant in transport-south episode, the nighttime concentration of O 3 remained as high as 40~50 ppbv due to the minimum level of NOx titration. Overall, the Seoul Metropolitan Area is at NOx-saturated and VOC-limited conditions, which was diagnosed by indicator species and VOC/NOx ratios.

SELECTION OF CITATIONS
SEARCH DETAIL
...