Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(38): 13939-13949, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37771763

ABSTRACT

Through coaxial direct ink writing, we fabricated a core-shell mesh system for the controlled release of carbon dots (C-dots). In the core ink, we developed an ink formulation with tuned viscosity using hydroxypropyl cellulose and polyethylene glycol to host C-dots. Polycaprolactone was employed as the main shell material, in combination with sodium alginate, to control the degradation rate of the shell. We investigated the degradation profile of the 3D-printed meshes and tracked the weekly release of C-dots in an aqueous medium by spectrofluorometry. We tested the efficacy of the C-dot release on plants by placing the meshes in transparent soil with Triticum aestivum L. seeds. We observed the in vivo translocation of the C-dots in the plant using confocal microscopy. We measured the root elongation and shoot length to assess the effect of C-dots on plant growth. Our study revealed that the plants exposed to C-dots grew 2.5-fold faster than the control group, indicating that C-dots are promising nanofertilizers for aggrotech and non-toxic fluorescent biolabels for in vivo applications.

2.
Small ; 12(32): 4357-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27337299

ABSTRACT

Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...