Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(5): pgad144, 2023 May.
Article in English | MEDLINE | ID: mdl-37215633

ABSTRACT

Neuropeptides are important regulators of animal physiology and behavior. Hitherto the gold standard for the localization of neuropeptides have been immunohistochemical methods that require the synthesis of antibody panels, while another limiting factor has been the brain's opacity for subsequent in situ light or fluorescence microscopy. To address these limitations, we explored the integration of high-resolution mass spectrometry imaging (MSI) with microtomography for a multiplexed mapping of neuropeptides in two evolutionary distant ant species, Atta sexdens and Lasius niger. For analyzing the spatial distribution of chemically diverse peptide molecules across the brain in each species, the acquisition of serial mass spectrometry images was essential. As a result, we have comparatively mapped the three-dimensional (3D) distributions of eight conserved neuropeptides throughout the brain microanatomy. We demonstrate that integrating the 3D MSI data into high-resolution anatomy models can be critical for studying organs with high plasticity such as brains of social insects. Several peptides, like the tachykinin-related peptides (TK) 1 and 4, were widely distributed in many brain areas of both ant species, whereas others, for instance myosuppressin, were restricted to specific regions only. Also, we detected differences at the species level; many peptides were identified in the optic lobe of L. niger, but only one peptide (ITG-like) was found in this region in A. sexdens. Building upon MS imaging studies on neuropeptides in invertebrate model systems, our approach leverages correlative MSI and computed microtomography for investigating fundamental neurobiological processes by visualizing the unbiased 3D neurochemistry in its complex anatomic environment.

2.
FASEB J ; : fj201800443, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29939785

ABSTRACT

Ants are emerging model systems to study cellular signaling because distinct castes possess different physiologic phenotypes within the same colony. Here we studied the functionality of inotocin signaling, an insect ortholog of mammalian oxytocin (OT), which was recently discovered in ants. In Lasius ants, we determined that specialization within the colony, seasonal factors, and physiologic conditions down-regulated the expression of the OT-like signaling system. Given this natural variation, we interrogated its function using RNAi knockdowns. Next-generation RNA sequencing of OT-like precursor knock-down ants highlighted its role in the regulation of genes involved in metabolism. Knock-down ants exhibited higher walking activity and increased self-grooming in the brood chamber. We propose that OT-like signaling in ants is important for regulating metabolic processes and locomotion.-Liutkeviciute, Z., Gil-Mansilla, E., Eder, T., Casillas-Pérez, B., Di Giglio, M. G., Muratspahic, E., Grebien, F., Rattei, T., Muttenthaler, M., Cremer, S., Gruber, C. W. Oxytocin-like signaling in ants influences metabolic gene expression and locomotor activity.

3.
Sci Rep ; 6: 39177, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958372

ABSTRACT

Oxytocin and vasopressin mediate a range of physiological functions that are important for osmoregulation, reproduction, social behaviour, memory and learning. The origin of this signalling system is thought to date back ~600 million years. Oxytocin/vasopressin-like peptides have been identified in several invertebrate species and they appear to be functionally related across the entire animal kingdom. There is little information available about the biology of this peptide G protein-coupled receptor signalling system in insects. Recently over 200 insect genome/transcriptome datasets were released allowing investigation of the molecular structure and phylogenetic distribution of the insect oxytocin/vasopressin orthologue - inotocin peptides and their receptors. The signalling system is present in early arthropods and representatives of some early-diverging lineages. However, Trichoptera, Lepidoptera, Siphonaptera, Mecoptera and Diptera, lack the presence of inotocin genes, which suggests the peptide-receptor system was probably lost in their common ancestor ~280 million-years-ago. In addition we detected several losses of the inotocin signalling system in Hemiptera (white flies, scale insects and aphids), and the complete absence in spiders (Chelicerata). This unique insight into evolutionarily patterns and sequence diversity of neuroendocrine hormones will provide opportunities to elucidate the physiology of the inotocin signalling system in one of the largest group of animals.


Subject(s)
Insect Proteins/metabolism , Insecta/metabolism , Neuropeptides/metabolism , Oxytocin/metabolism , Vasopressins/metabolism , Amino Acid Sequence , Animals , Databases, Genetic , Hemiptera/genetics , Hemiptera/metabolism , Holometabola/genetics , Holometabola/metabolism , Insect Proteins/classification , Insect Proteins/genetics , Insecta/genetics , Neuropeptides/classification , Neuropeptides/genetics , Oxytocin/classification , Oxytocin/genetics , Phylogeny , Protein Precursors/genetics , Protein Precursors/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Signal Transduction , Spiders/genetics , Spiders/metabolism , Vasopressins/classification , Vasopressins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...