Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 18(7)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684668

ABSTRACT

After the resolution of the 3D structure of the Cd9-aggregate of the Littorina littorea metallothionein (MT), we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF), Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M9-LlwtMT complexes with Zn(II) and Cd(II), while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I). As expected, the truncated mutants gave rise to unique M6-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II) than for Zn(II), although the analysis of the Zn(II)/Cd(II) displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II) binding. Contrarily, the analysis of their Cu(I) binding abilities revealed that every LlMT domain is prone to build Cu4-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain) confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.


Subject(s)
Cadmium/metabolism , Metallothionein/metabolism , Animals , Binding Sites , Gastropoda/genetics , Gastropoda/metabolism , Metallothionein/chemistry , Metallothionein/genetics , Mutation , Protein Binding , Substrate Specificity , Zinc/metabolism
2.
PLoS One ; 11(2): e0148651, 2016.
Article in English | MEDLINE | ID: mdl-26882011

ABSTRACT

Fungal Cu-thioneins, and among them, the paradigmatic Neurospora crassa metallothionein (MT) (26 residues), were once considered as the shortest MTs--the ubiquitous, versatile metal-binding proteins--among all organisms, and thus representatives of their primeval forms. Nowadays, fungal MTs of diverse lengths and sequence features are known, following the huge heterogeneity of the Kingdom of Fungi. At the opposite end of N. crassa MT, the recently reported Cryptococcus neoformans CnMT1 and CnMT2 (122 and 186 aa) constitute the longest reported fungal MTs, having been identified as virulence factors of this pathogen. CnMTs are high-capacity Cu-thioneins that appear to be built by tandem amplification of a basic unit, a 7-Cys segment homologous to N. crassa MT. Here, we report the in silico, in vivo and in vitro study of a still longer fungal MT, belonging to Tremella mesenterica (TmMT), a saprophytic ascomycete. The TmMT gene has 10 exons, and it yields a 779-bp mature transcript that encodes a 257 residue-long protein. This MT is also built by repeated fragments, but of variable number of Cys: six units of the 7-Cys building blocks--CXCX3CSCPPGXCXCAXCP-, two fragments of six Cys, plus three Cys at the N-terminus. TmMT metal binding abilities have been analyzed through the spectrophotometric and spectrometric characterization of its recombinant Zn-, Cd- and Cu-complexes. Results allow it to be unambiguous classified as a Cu-thionein, also of extraordinary coordinating capacity. According to this feature, when the TmMT cDNA is expressed in MT-devoid yeast cells, it is capable of restoring a high Cu tolerance level. Since it is not obvious that T. mesenterica shares the same physiological needs for a high capacity Cu-binding protein with C. neoformans, the existence of this peculiar MT might be better explained on the basis of a possible role in Cu-handling for the Cu-enzymes responsible in lignin degradation pathways.


Subject(s)
Amino Acid Sequence/genetics , Basidiomycota/genetics , Lignin/metabolism , Metallothionein/genetics , Basidiomycota/metabolism , Cadmium/chemistry , Circular Dichroism , Copper/chemistry , Metabolic Networks and Pathways , Metallothionein/chemistry , Metallothionein/metabolism , Protein Binding , Spectrometry, Mass, Electrospray Ionization , Zinc/chemistry
3.
Int J Mol Sci ; 17(1)2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26703589

ABSTRACT

Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion.


Subject(s)
Cadmium/metabolism , Metallothionein/metabolism , Polymorphism, Genetic , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Helix, Snails/genetics , Helix, Snails/metabolism , Metallothionein/chemistry , Metallothionein/genetics , Molecular Sequence Data , Protein Binding , Zinc/metabolism
4.
Mol Microbiol ; 98(5): 977-92, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26287377

ABSTRACT

Cryptococcus neoformans metallothioneins (MTs), CnMT1 and CnMT2, have been identified as essential infectivity and virulence factors of this pathogen. Both MTs are unusually long Cu-thioneins, exhibiting protein architecture and metal-binding abilities compatible with the hypothesis of resulting from three and five tandem repetitions of 7-Cys motives, respectively, each of them folding into Cu5-clusters. Through the study of the Zn(II)- and Cu(I)-binding capabilities of several CnMT1 truncated mutants, we show that a 7-Cys segment of CnMT1 folds into Cu5-species, of additive capacity when joined in tandem. All the obtained Cu-complexes share practically similar architectural features, if judging by their almost equivalent CD fingerprints, and they also share their capacity to restore copper tolerance in MT-devoid yeast cells. Besides the analysis of the modular composition of these long fungal MTs, we evaluate the features of the Cys-rich stretch spacer and flanking sequences that allow the construction of stable metal clusters by adjacent union of binding modules. Overall, our data support a mechanism by which some microbial MTs may have evolved to enlarge their original metal co-ordination capacity under the specific selective pressure of counteracting the Cu-based immunity mechanisms evolved by the infected hosts.


Subject(s)
Cryptococcus neoformans/genetics , Host-Pathogen Interactions , Metallothionein/genetics , Metallothionein/metabolism , Amino Acid Sequence , Circular Dichroism , Copper/metabolism , Cryptococcus neoformans/metabolism , Food , Genetic Complementation Test , Metallothionein/chemistry , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Spectrometry, Mass, Electrospray Ionization , Zinc/metabolism
5.
Int J Biol Sci ; 11(4): 456-71, 2015.
Article in English | MEDLINE | ID: mdl-25798065

ABSTRACT

The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn(2+)-, Cd(2+)- or Cu(+)-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd(2+) coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn(2+), they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu(+), although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd(2+) and for Cu(+), and although not optimally, it yielded the best result when coordinating Zn(2+). The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).


Subject(s)
Metallothionein/metabolism , Tetrahymena thermophila/metabolism , Copper/metabolism , Protein Binding , Substrate Specificity , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...