Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Neuropsychopharmacol ; 27(2): 180-191, 2017 02.
Article in English | MEDLINE | ID: mdl-27986355

ABSTRACT

Cognitive deficits are considered a key feature of schizophrenia, and they usually precede the onset of the illness and continue after psychotic symptoms appear. Current antipsychotic drugs have little or no effect on the cognitive deficits of this disorder. Prolyl oligopeptidase (POP) is an 81-kDa monomeric serine protease that is expressed in brain and other tissues. POP inhibitors have shown neuroprotective, anti-amnesic and cognition-enhancing properties. Here we studied the potential of IPR19, a new POP inhibitor, for the treatment of the cognitive symptoms related to schizophrenia. The efficacy of the inhibitor was evaluated in mouse models based on subchronic phencyclidine and acute dizocilpine administration, and in adult offspring from mothers with immune reaction induced by polyinosinic:polycytidylic acid administration during pregnancy. Acute IPR19 administration (5mg/kg, i.p.) reversed the cognitive performance deficits of the three mouse models in the novel object recognition test, T-maze, and eight-arm radial maze. The compound also ameliorates deficits of the prepulse inhibition response. The in vitro inhibitory efficacy and selectivity, brain penetration and exposure time after injection of IPR19 were also addressed. Our results indicate that the inhibition of POP using IPR19 may offer a promising strategy to develop drugs to ameliorate the cognitive deficits of schizophrenia.


Subject(s)
Cognition Disorders/drug therapy , Proline/analogs & derivatives , Psychotropic Drugs/pharmacology , Schizophrenia/drug therapy , Schizophrenic Psychology , Animals , Cell Line, Tumor , Cognition/drug effects , Cognition/physiology , Cognition Disorders/enzymology , Cognition Disorders/etiology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Poly I-C , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Proline/chemistry , Proline/pharmacokinetics , Proline/pharmacology , Proline/toxicity , Prolyl Oligopeptidases , Psychotropic Drugs/chemistry , Psychotropic Drugs/pharmacokinetics , Psychotropic Drugs/toxicity , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Schizophrenia/complications , Schizophrenia/enzymology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/toxicity
2.
J Neuroinflammation ; 11: 128, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25069615

ABSTRACT

BACKGROUND: An accumulating body of evidence points to the significance of neuroinflammation and immunogenetics in schizophrenia, and an imbalance of cytokines in the central nervous system (CNS) has been suggested to be associated with the disorder. Munc18-overexpressing mice (Munc18-OE) have provided a model for the study of the alterations that may underlie the symptoms of subjects with schizophrenia. The aim of the present study was to elucidate the involvement of neuroinflammation and cytokine imbalance in this model. METHODS: Cytokines were evaluated in the cortex and the striatum of Munc18-OE and wild-type (WT) mice by enzyme-linked immunosorbent assay (ELISA). Protein levels of specific microglia and macrophage, astrocytic and neuroinflammation markers were quantified by western blot in the cortex and the striatum of Munc18-OE and WT mice. RESULTS: Each cytokine evaluated (Interferon-gamma (IFN-γ), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-2 (IL-2) and CCL2 chemokine) was present at higher levels in the striatum of Munc18-OE mice than WT. Cortical TNF-α and IL-2 levels were significantly lower in Munc18-OE mice than WT mice. The microglia and macrophage marker CD11b was lower in the cortexes of Munc18-OE mice than WT, but no differences were observed in the striatum. Glial Fibrillary Acidic Protein (GFAP) and Nuclear Factor-kappaB (NF-κB)p65 levels were not different between the groups. Interleukin-1beta (IL-1ß) and IL-6 levels were beneath detection limits. CONCLUSIONS: The disrupted levels of cytokines detected in the brain of Munc18-OE mice was found to be similar to clinical reports and endorses study of this type for analysis of this aspect of the disorder. The lower CD11b expression in the cortex but not in the striatum of the Munc18-OE mice may reflect differences in physiological activity. The cytokine expression pattern observed in Munc18-OE mice is similar to a previously published model of schizophrenia caused by maternal immune activation. Together, these data suggest a possible role for an immune imbalance in this disorder.


Subject(s)
Cytokines/metabolism , Munc18 Proteins/metabolism , Schizophrenia/metabolism , Signal Transduction/physiology , Animals , Brain/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Gene Expression , Glial Fibrillary Acidic Protein , Male , Mice , Mice, Inbred C57BL , Munc18 Proteins/genetics , NF-kappa B/metabolism , Schizophrenia/genetics , Schizophrenia/pathology , Signal Transduction/drug effects
3.
Int J Neuropsychopharmacol ; 15(5): 573-88, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21669024

ABSTRACT

Munc18-1 and syntaxin-1 are crucial interacting molecules for synaptic membrane fusion and neurotransmitter release. Contrasting abnormalities of several proteins of the exocytotic machinery, including the formation of SNARE (synaptobrevin, SNAP-25 and syntaxin-1) complexes, have been reported in schizophrenia. This study quantified in the dorsolateral prefrontal cortex (PFC, Brodmann area 9) the immunocontent of munc18-1a/b isoforms, syntaxin-1A, other presynaptic proteins (synaptotagmin, synaptophysin), and SNARE complexes, as well as the effects of psychoactive drug exposure, in schizophrenia (SZ, n=24), non-schizophrenia suicide (SD, n=13) and major depression (MD, n=15) subjects compared to matched controls (n=39). SZ was associated with normal expression of munc18-1a/b and increased syntaxin-1A (+44%). The presence of antipsychotic drugs reduced the basal content of munc18-1a isoform (-23%) and synaptobrevin (-32%), and modestly reduced that of up-regulated syntaxin-1A (-16%). Munc18-1a and syntaxin-1A protein expression correlated positively in controls but showed a markedly opposite pattern in SZ, regardless of antipsychotic treatment. Thus, the ratio of syntaxin-1A to munc18-1a showed a net increase in SZ (+53/114%). The SNARE complex (75 kDa) was found unaltered in antipsychotic-free and reduced (-28%) in antipsychotic-treated SZ subjects. None of these abnormalities were observed in SD and MD subjects, unexposed or exposed to psychoactive drugs. The results reveal some exocytotic dysfunctions in SZ that are probably related to an imbalance of the interaction between munc18-1a and SNARE (mainly syntaxin-1A) complex. Moreover, antipsychotic drug treatment is associated with lower content of key proteins of the exocytotic machinery, which could result in a destabilization/impairment of neurosecretion.


Subject(s)
Antipsychotic Agents/metabolism , Depressive Disorder, Major/metabolism , Munc18 Proteins/metabolism , Prefrontal Cortex/metabolism , SNARE Proteins/metabolism , Schizophrenia , Suicide , Syntaxin 1/metabolism , Animals , Down-Regulation , Exocytosis/physiology , Humans , Male , Protein Isoforms/metabolism , R-SNARE Proteins/metabolism , Rats , Rats, Sprague-Dawley , Schizophrenia/drug therapy , Schizophrenia/metabolism , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...