Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35632181

ABSTRACT

This paper presents an envelope linearization technique to compensate for the nonlinear distortion of envelope tracking (ET) power amplifiers (PAs) for 5G new radio (NR) mobile terminals. The proposed envelope optimization (EOPT) method is agnostic of the nonlinear distortion generated in the envelope supply path and can compensate for the nonlinear distortion at the ET PA output without the need to monitor the output at the envelope tracking modulator (ETM). The linearization system in the envelope path is based on the envelope generalized memory polynomial (EGMP) behavioral model. Since the ETM output is not available, an iterative nonlinear least squares solution inspired in the deep deterministic policy gradient (DDPG) algorithm is proposed to extract the coefficients of the EGMP model. The EOPT method is validated on a system-on-chip (SoC) ET PA board designed for mobile terminal applications. Experimental results show the suitability of the proposed method to guarantee the linearity requirements (i.e., adjacent channel power ratio below -36 dBc) with 16.8% of power efficiency when operating the ET PA with 5G new radio test signals of 60 MHz bandwidth operating at 2.55 GHz (band 7). The linearization performance of the proposed EOPT method is comparable to the envelope leakage cancellation (ELC) approach (but saving the need for an analog to digital converter to monitor the ETM output), and can outperform a conventional I-Q digital predistorter based on the generalized memory polynomial (GMP) behavioral model.


Subject(s)
Algorithms , Amplifiers, Electronic
2.
Sensors (Basel) ; 21(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502663

ABSTRACT

The power amplifier (PA) is the most critical subsystem in terms of linearity and power efficiency. Digital predistortion (DPD) is commonly used to mitigate nonlinearities while the PA operates at levels close to saturation, where the device presents its highest power efficiency. Since the DPD is generally based on Volterra series models, its number of coefficients is high, producing ill-conditioned and over-fitted estimations. Recently, a plethora of techniques have been independently proposed for reducing their dimensionality. This paper is devoted to presenting a fair benchmark of the most relevant order reduction techniques present in the literature categorized by the following: (i) greedy pursuits, including Orthogonal Matching Pursuit (OMP), Doubly Orthogonal Matching Pursuit (DOMP), Subspace Pursuit (SP) and Random Forest (RF); (ii) regularization techniques, including ridge regression and least absolute shrinkage and selection operator (LASSO); (iii) heuristic local search methods, including hill climbing (HC) and dynamic model sizing (DMS); and (iv) global probabilistic optimization algorithms, including simulated annealing (SA), genetic algorithms (GA) and adaptive Lipschitz optimization (adaLIPO). The comparison is carried out with modeling and linearization performance and in terms of runtime. The results show that greedy pursuits, particularly the DOMP, provide the best trade-off between execution time and linearization robustness against dimensionality reduction.


Subject(s)
Algorithms , Amplifiers, Electronic
3.
Sensors (Basel) ; 21(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920523

ABSTRACT

This paper presents an auto-tuning approach for dual-input power amplifiers using a combination of global optimisation search algorithms and adaptive linearisation in the optimisation of a multiple-input power amplifier. The objective is to exploit the extra degrees of freedom provided by dual-input topologies to enhance the power efficiency figures along wide signal bandwidths and high peak-to-average power ratio values, while being compliant with the linearity requirements. By using heuristic search global optimisation algorithms, such as the simulated annealing or the adaptive Lipschitz Optimisation, it is possible to find the best parameter configuration for PA biasing, signal calibration, and digital predistortion linearisation to help mitigating the inherent trade-off between linearity and power efficiency. Experimental results using a load-modulated balanced amplifier as device-under-test showed that after properly tuning the selected free-parameters it was possible to maximise the power efficiency when considering long-term evolution signals with different bandwidths. For example, a carrier aggregated a long-term evolution signal with up to 200 MHz instantaneous bandwidth and a peak-to-average power ratio greater than 10 dB, and was amplified with a mean output power around 33 dBm and 22.2% of mean power efficiency while meeting the in-band (error vector magnitude lower than 1%) and out-of-band (adjacent channel leakage ratio lower than -45 dBc) linearity requirements.

SELECTION OF CITATIONS
SEARCH DETAIL
...