Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
MethodsX ; 9: 101716, 2022.
Article in English | MEDLINE | ID: mdl-35601955

ABSTRACT

Studies on the microbiome of different species are on the rise, due to a growing interest in animal health and the safety of food products of animal origin. A challenge with studying animals' microbiomes is to find methods that obtain a good representation of the microbial community of interest. Good unbiased sampling protocols are the basis for a solid experimental design, but may need to be done in environments where sample preservation could be difficult. In this study, we evaluate by shotgun sequencing the impact of stabilizing swine faeces samples using a commercial stabilizer (PERFORMAbiome • GUT | PB-200, DNA Genotek). Using stabilizer makes it possible to obtain DNA that is significantly less degraded than when the samples are not stabilized. Also, the results on the taxonomy and on the bacterial functions encoded in the microbiome are impacted by whether or not the samples are stabilized. Finally, the stabilization of samples that had already been frozen and stored at -80°C led to extraction and DNA quality results similar to those obtained from samples that were stabilized before freezing.

2.
Antibiotics (Basel) ; 10(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34680790

ABSTRACT

Pork meat is in high demand worldwide and this is expected to increase. Pork is often raised in intensive conditions, which is conducive to the spread of infectious diseases. Vaccines, antibiotics, and other biosafety measures help mitigate the impact of infectious diseases. However, bacterial strains resistant to antibiotics are more and more frequently found in pig farms, animals, and the environment. It is now recognized that a holistic perspective is needed to sustainably fight antibiotic resistance, and that an integrated One Health approach is essential. With this in mind, this review tackles antibiotic resistance throughout the pork raising process, including their microbiome; many factors of their environment (agricultural workers, farms, rivers, etc.); and an overview of the impact of antibiotic resistance on pork meat, which is the end product available to consumers. Antibiotic resistance, while a natural process, is a public health concern. If we react, and act, collectively, it is expected to be, at least partially, reversible with judicious antibiotic usage and the development of innovative strategies and tools to foster animal health.

3.
Am J Drug Alcohol Abuse ; 44(4): 431-440, 2018.
Article in English | MEDLINE | ID: mdl-29333880

ABSTRACT

BACKGROUND: Currently, no pharmacogenetic tests for selecting an opioid-dependence pharmacotherapy have been approved by the US Food and Drug Administration. OBJECTIVES: Determine the effects of variants in 11 genes on dropout rate and dose in patients receiving methadone or buprenorphine/naloxone (ClinicalTrials.gov Identifier: NCT00315341). METHODS: Variants in six pharmacokinetic genes (CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4) and five pharmacodynamic genes (HTR2A, OPRM1, ADRA2A, COMT, SLC6A4) were genotyped in samples from a 24-week, randomized, open-label trial of methadone and buprenorphine/naloxone for the treatment of opioid dependence (n = 764; 68.7% male). Genotypes were then used to determine the metabolism phenotype for each pharmacokinetic gene. Phenotypes or genotypes for each gene were analyzed for association with dropout rate and mean dose. RESULTS: Genotype for 5-HTTLPR in the SLC6A4 gene was nominally associated with dropout rate when the methadone and buprenorphine/naloxone groups were combined. When the most significant variants associated with dropout rate were analyzed using pairwise analyses, SLC6A4 (5-HTTLPR) and COMT (Val158Met; rs4860) had nominally significant associations with dropout rate in methadone patients. None of the genes analyzed in the study was associated with mean dose of methadone or buprenorphine/naloxone. CONCLUSIONS: This study suggests that functional polymorphisms related to synaptic dopamine or serotonin levels may predict dropout rates during methadone treatment. Patients with the S/S genotype at 5-HTTLPR in SLC6A4 or the Val/Val genotype at Val158Met in COMT may require additional treatment to improve their chances of completing addiction treatment. Replication in other methadone patient populations will be necessary to ensure the validity of these findings.


Subject(s)
Buprenorphine, Naloxone Drug Combination/therapeutic use , Genotype , Methadone/therapeutic use , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/genetics , Patient Dropouts , Adult , Female , Humans , Male , Narcotic Antagonists/therapeutic use , Opiate Substitution Treatment , Pharmacogenetics , Pharmacogenomic Testing , Treatment Outcome
4.
Cell ; 117(3): 399-412, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15109499

ABSTRACT

Skeletal muscle atrophy is a debilitating response to fasting, disuse, cancer, and other systemic diseases. In atrophying muscles, the ubiquitin ligase, atrogin-1 (MAFbx), is dramatically induced, and this response is necessary for rapid atrophy. Here, we show that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction. IGF-1 treatment or AKT overexpression inhibits Foxo and atrogin-1 expression. Moreover, constitutively active Foxo3 acts on the atrogin-1 promoter to cause atrogin-1 transcription and dramatic atrophy of myotubes and muscle fibers. When Foxo activation is blocked by a dominant-negative construct in myotubes or by RNAi in mouse muscles in vivo, atrogin-1 induction during starvation and atrophy of myotubes induced by glucocorticoids are prevented. Thus, forkhead factor(s) play a critical role in the development of muscle atrophy, and inhibition of Foxo factors is an attractive approach to combat muscle wasting.


Subject(s)
Ligases/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Protein Serine-Threonine Kinases , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenoviridae/genetics , Animals , Cells, Cultured , Cloning, Molecular , Fasting/metabolism , Gene Expression Regulation , Genetic Vectors , Glucocorticoids/metabolism , Insulin-Like Growth Factor I/metabolism , Ligases/genetics , Mice , Models, Biological , Muscle Cells/enzymology , Muscle Proteins , Muscle, Skeletal/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , RNA Interference , SKP Cullin F-Box Protein Ligases , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL