Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 526(2): 285-309, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-28980312

ABSTRACT

As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement.


Subject(s)
Gene Expression Regulation/physiology , Neural Stem Cells/physiology , Regeneration/physiology , Spinal Cord/cytology , Tail/metabolism , Animals , Bromodeoxyuridine/metabolism , ELAV Proteins/metabolism , Ependyma/cytology , Lizards , Microscopy, Electron, Transmission , Microtubule Proteins/metabolism , Nerve Regeneration/physiology , Nerve Tissue Proteins/metabolism , Neural Stem Cells/ultrastructure , SOXB1 Transcription Factors/metabolism , Spinal Cord/physiology , Tail/physiology , Tail/ultrastructure , Time Factors
2.
Regeneration (Oxf) ; 2(2): 45-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-27499867

ABSTRACT

Although amniotes (reptiles, including birds, and mammals) are capable of replacing certain tissues, complete appendage regeneration is rare. Perhaps the most striking example is the lizard tail. Tail loss initiates a spontaneous epimorphic (blastema-mediated) regenerative program, resulting in a fully functional but structurally non-identical replacement. Here we review lizard tail regeneration with a particular focus on the blastema. In many lizards, the original tail has evolved a series of fracture planes, anatomical modifications that permit the tail to be self-detached or autotomized. Following tail loss, the wound site is covered by a specialized wound epithelium under which the blastema develops. An outgrowth of the spinal cord, the ependymal tube, plays a key role in governing growth (and likely patterning) of the regenerate tail. In some species (e.g., geckos), the blastema forms as an apical aggregation of proliferating cells, similar to that of urodeles and teleosts. For other species (e.g., anoles) the identification of a proliferative blastema is less obvious, suggesting an unexpected diversity in regenerative mechanisms among tail-regenerating lizards.

SELECTION OF CITATIONS
SEARCH DETAIL
...