Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38068243

ABSTRACT

The use of adhesive bonding in diverse industries such as the automotive and aerospace sectors has grown considerably. In structural construction, adhesive joints provide a unique combination of low structural weight, high strength and stiffness, combined with a relatively simple and easily automated manufacturing method, characteristics that are ideal for the development of modern and highly efficient vehicles. In these applications, ensuring that the failure mode of a bonded joint is cohesive rather than adhesive is important since this failure mode is more controlled and easier to model and to predict. This work presents a numerical technique that enables the precise prediction of the bonded joint's behavior regarding not only its failure mode, but also the joint's strength, when inorganic fillers are added to the adhesive. To that end, hollow glass particles were introduced into an epoxy adhesive in different amounts, and a numerical study was carried out to simulate their influence on single lap joint specimens. The numerical results were compared against experimental ones, not only in terms of joint strength, but also their failure pattern. The neat adhesive, which showed 9% and 20% variations in terms of failure load and displacement, respectively. However, looking at the doped configurations, these presented smaller variations of about 2% and 10% for each respective variable. In all cases, by adding glass beads, crack initiation tended to change from adhesive to cohesive but with lower strength and ductility, correctly modeling the general experimental behavior as intended.

2.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683116

ABSTRACT

Adhesives are extensively used in the automotive and aeronautical industries as they enable the creation of durable and light weight joints, with exceptional strength to weight ratios. The constant search for the means of adapting the mechanical performance of adhesives to each application has led to the use of several types of fillers to change their properties. Following a study on the effect of inorganic fillers, i.e., hollow glass beads, in the failure mechanisms of single lap joint's (SLJ), this work focuses on the response of the strength and fracture properties of structural adhesives to this filler. To this end, their tensile strength and mode I fracture properties were thoroughly analyzed by performing bulk tensile and double-cantilever beam (DCB) tests, at a quasi-static speed. The specimens were manufactured by adding different %v/v of filler to two epoxy-based crash resistant adhesives. Both adhesives have shown a negligible effect on the tensile strength, a decrease in strain at failure and critical energy release rate in mode I, as well as an increase of the Young's modulus, for higher % in volume of hollow glass beads. These phenomena were further analyzed recurring to scanning electron microscopy, and the concept of rule of mixtures.

3.
Materials (Basel) ; 14(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34832412

ABSTRACT

The use of modern structural adhesives provides a lightweight, practical, and high strength joining methodology, which is increasingly being adopted in the automotive and aeronautical sectors, among many others. However, the strict mechanical performance standards that must be met in these applications require a constant search for ways of improving the adhesives' behavior, which has led to the growing use of reinforcements as a way of improving the capabilities of bonded joints. The aim of this work was, thus, to analyze how the addition of inorganic fillers to the adhesive layer affects a joint's strength and its failure mechanism. To this end, single lap joint specimens with mild steel and high strength steel substrates were tested, at quasi-static speeds, and with different amounts of glass microspheres reinforcing two different structural adhesives. The experimental results indicated that the addition of glass particles reduced the joint performance for both substrates under study. Furthermore, the failure pattern was found to evolve from adhesive failure to a cohesive type of failure as the amount of glass particles present in the adhesive was increased.

SELECTION OF CITATIONS
SEARCH DETAIL
...