Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Adv Biol (Weinh) ; : e2300531, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935534

ABSTRACT

A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFß3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFß3 exposure on reactive astrocyte phenotype have not yet been explored. This study investigates whether magnetic core-shell electrospun fibers can be used to alter the release rate of TGFß3 using externally applied magnetic fields, with the eventual application of tailored drug delivery based on SCI severity. Magnetic core-shell fibers are fabricated by incorporating superparamagnetic iron oxide nanoparticles (SPIONs) into the shell and TGFß3 into the core solution for coaxial electrospinning. Magnetic field stimulation increased the release rate of TGFß3 from the fibers by 25% over 7 days and released TGFß3 reduced gene expression of key astrocyte reactivity markers by at least twofold. This is the first study to magnetically deliver bioactive proteins from magnetic fibers and to assess the effect of sustained release of TGFß3 on reactive astrocyte phenotype.

2.
ACS Biomater Sci Eng ; 10(1): 482-496, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38109315

ABSTRACT

Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.


Subject(s)
Bombyx , Fibroins , Rats , Animals , Silk/chemistry , Fibroins/pharmacology , Tissue Engineering/methods , Nerve Regeneration
3.
Front Cell Neurosci ; 17: 1266019, 2023.
Article in English | MEDLINE | ID: mdl-37941607

ABSTRACT

Central nervous system (CNS) glia, including astrocytes, microglia, and oligodendrocytes, play prominent roles in traumatic injury and degenerative disorders. Due to their importance, active pharmaceutical ingredients (APIs) are being developed to modulate CNS glia in order to improve outcomes in traumatic injury and disease. While many of these APIs show promise in vitro, the majority of APIs that are systemically delivered show little penetration through the blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB) and into the CNS, rendering them ineffective. Novel nanomaterials are being developed to deliver APIs into the CNS to modulate glial responses and improve outcomes in injury and disease. Nanomaterials are attractive options as therapies for central nervous system protection and repair in degenerative disorders and traumatic injury due to their intrinsic capabilities in API delivery. Nanomaterials can improve API accumulation in the CNS by increasing permeation through the BBB of systemically delivered APIs, extending the timeline of API release, and interacting biophysically with CNS cell populations due to their mechanical properties and nanoscale architectures. In this review, we present the recent advances in the fields of both locally implanted nanomaterials and systemically administered nanoparticles developed for the delivery of APIs to the CNS that modulate glial activity as a strategy to improve outcomes in traumatic injury and disease. We identify current research gaps and discuss potential developments in the field that will continue to translate the use of glia-targeting nanomaterials to the clinic.

4.
ACS Appl Bio Mater ; 6(2): 806-818, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36749645

ABSTRACT

Intracortical microelectrodes are used with brain-computer interfaces to restore lost limb function following nervous system injury. While promising, recording ability of intracortical microelectrodes diminishes over time due, in part, to neuroinflammation. As curcumin has demonstrated neuroprotection through anti-inflammatory activity, we fabricated a 300 nm-thick intracortical microelectrode coating consisting of a polyurethane copolymer of curcumin and polyethylene glycol (PEG), denoted as poly(curcumin-PEG1000 carbamate) (PCPC). The uniform PCPC coating reduced silicon wafer hardness by two orders of magnitude and readily absorbed water within minutes, demonstrating that the coating is soft and hydrophilic in nature. Using an in vitro release model, curcumin eluted from the PCPC coating into the supernatant over 1 week; the majority of the coating was intact after an 8-week incubation in buffer, demonstrating potential for longer term curcumin release and softness. Assessing the efficacy of PCPC within a rat intracortical microelectrode model in vivo, there were no significant differences in tissue inflammation, scarring, neuron viability, and myelin damage between the uncoated and PCPC-coated probes. As the first study to implant nonfunctional probes with a polymerized curcumin coating, we have demonstrated the biocompatibility of a PCPC coating and presented a starting point in the design of poly(pro-curcumin) polymers as coating materials for intracortical electrodes.


Subject(s)
Curcumin , Rats , Animals , Microelectrodes , Curcumin/pharmacology , Electrodes, Implanted , Neurons , Polymers
5.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36829756

ABSTRACT

Curcumin, a bioactive phenol derived from turmeric, is an antioxidant, anti-inflammatory, and antibacterial molecule. Although curcumin exhibits beneficial effects in its innate form, it is highly hydrophobic, which leads to poor water solubility and, consequently, low bioavailability. The lack of bioavailability limits curcumin's effectiveness as a treatment and restricts its use in clinical applications. Furthermore, to achieve beneficial, clinically relevant results, high doses of curcumin are required for systemic administration. Many researchers have utilized biomaterial carriers, including electrospun fibers, nanoparticles, hydrogels, and composite scaffolds, to overcome curcumin's principle therapeutic limitation of low bioavailability. By using biomaterials to deliver curcumin directly to injury sites, researchers have harnessed the beneficial natural properties of curcumin while providing scaffolding to support tissue regeneration. This review will provide an in-depth overview of the literature that utilizes biomaterial delivery of curcumin for tissue regeneration in injury and disease models.

6.
Biomacromolecules ; 24(1): 294-307, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36512693

ABSTRACT

Curcumin is a natural polyphenol that exhibits remarkable antioxidant and anti-inflammatory activities; however, its clinical application is limited in part by its physiological instability. Here, we report the synthesis of curcumin-derived polyesters that release curcumin upon hydrolytic degradation to improve curcumin stability and solubility in physiological conditions. Curcumin was incorporated in the polymer backbone by a one-pot condensation polymerization in the presence of sebacoyl chloride and polyethylene glycol (PEG, Mn = 1 kDa). The thermal and mechanical properties, surface wettability, self-assembly behavior, and drug-release kinetics all depend sensitively on the mole percentage of curcumin incorporated in these statistical copolymers. Curcumin release was triggered by the hydrolysis of phenolic esters on the polymer backbone, which was confirmed using a PEGylated curcumin model compound, which represented a putative repeating unit within the polymer. The release rate of curcumin was controlled by the hydrophilicity of the polymers. Burst release (2 days) and extended release (>8 weeks) can be achieved from the same polymer depending on curcumin content in the copolymer. The materials can quench free radicals for at least 8 weeks and protect primary neurons from oxidative stress in vitro. Further, these copolymer materials could be processed into both thin films and self-assembled particles, depending on the solvent-based casting conditions. Finally, we envision that these materials may have potential for neural tissue engineering application, where antioxidant release can mitigate oxidative stress and the inflammatory response following neural injury.


Subject(s)
Curcumin , Curcumin/pharmacology , Antioxidants/pharmacology , Drug Carriers , Polymers , Polyethylene Glycols , Polyesters
7.
Acta Biomater ; 155: 370-385, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36423820

ABSTRACT

Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Polymers/chemistry , Lactic Acid/chemistry , Neurites/metabolism , Nerve Regeneration/physiology , Nerve Growth Factors/metabolism
8.
J Neural Eng ; 19(3)2022 06 06.
Article in English | MEDLINE | ID: mdl-35580576

ABSTRACT

Objective.Nerve guidance scaffolds containing anisotropic architectures provide topographical cues to direct regenerating axons through an injury site to reconnect the proximal and distal end of an injured nerve or spinal cord. Previousin vitrocultures of individual neurons revealed that fiber characteristics such as fiber diameter and inter-fiber spacing alter neurite morphological features, such as total neurite length, the longest single neurite, branching density, and the number of primary neurites. However, the relationships amongst these four neurite morphological features have never been studied on fibrous topographies using multivariate analysis.Approach.In this study, we cultured dissociated dorsal root ganglia on aligned, fibrous scaffolds and flat, isotropic films and evaluated the univariate and multivariate differences amongst these four neurite morphological features.Main results.Univariate analysis showed that fibrous scaffolds increase the length of the longest neurite and decrease branching density compared to film controls. Further, multivariate analysis revealed that, regardless of scaffold type, overall neurite length increases due to a compromise between the longest extending neurite, branching density, and the number of primary neurites. Additionally, multivariate analysis indicated that neurite branching is more independent of the other neurite features when neurons were cultured on films but that branching is strongly related to the other neurite features when cultured on fibers.Significance.These findings are significant as they are the first evidence that aligned topographies affect the relationships between neurite morphological features. This study provides a foundation for analyzing how individual neurite morphology may relate to neural regeneration on a macroscopic scale and provide information that may be used to optimize nerve guidance scaffolds.


Subject(s)
Ganglia, Spinal , Neurites , Cells, Cultured , Ganglia, Spinal/physiology , Multivariate Analysis , Nerve Regeneration/physiology , Neurites/physiology , Neurons/physiology , Polyesters , Tissue Scaffolds
9.
Adv Drug Deliv Rev ; 183: 114161, 2022 04.
Article in English | MEDLINE | ID: mdl-35183657

ABSTRACT

Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.


Subject(s)
Nanofibers , Biocompatible Materials , Gene Editing , Gene Transfer Techniques , Humans , Tissue Engineering , Tissue Scaffolds
11.
Adv Healthc Mater ; 10(22): e2101329, 2021 11.
Article in English | MEDLINE | ID: mdl-34494398

ABSTRACT

Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.


Subject(s)
Elastin , Hyaluronic Acid , Extracellular Matrix , Fibrin , Humans , Hydrogels , Peptides , Tissue Engineering
12.
Acta Biomater ; 131: 302-313, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34271170

ABSTRACT

Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field. Neurite outgrowth from primary rat dorsal root ganglia (DRG) was assessed from explants cultured on aligned control and SPION-grafted electrospun fibers as well as on non-grafted fibers with SPIONs dispersed in the culture media. To determine the optimal magnetic field stimulation to promote neurite outgrowth, we generated a static, alternating, and linearly moving magnet and simulated the magnetic flux density at different areas of the scaffold over time. The alternating magnetic field increased neurite length by 40% on control fibers compared to a static magnetic field. Additionally, stimulation with an alternating magnetic field resulted in a 30% increase in neurite length and 62% increase in neurite area on SPION-grafted fibers compared to DRG cultured on PLLA fibers with untethered SPIONs added to the culture media. These findings demonstrate that SPION-grafted fiber composites in combination with magnetic fields are more beneficial for stimulating neurite outgrowth on electrospun fibers than dispersed SPIONs. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers improve axonal regeneration by acting as a passive guidance cue but do not actively interact with cells, while magnetic nanoparticles can be remotely manipulated to interact with neurons and elicit neurite outgrowth. Here, for the first time, we examine the combination of magnetic fields, magnetic nanoparticles, and aligned electrospun fibers to enhance neurite outgrowth. We show an alternating magnetic field alone increases neurite outgrowth on aligned electrospun fibers. However, combining the alternating field with magnetic nanoparticle-grafted fibers does not affect neurite outgrowth compared to control fibers but improves outgrowth compared to freely dispersed magnetic nanoparticles. This study provides the groundwork for utilizing magnetic electrospun fibers and magnetic fields as a method for promoting axonal growth.


Subject(s)
Ganglia, Spinal , Tissue Scaffolds , Animals , Magnetic Fields , Magnetic Iron Oxide Nanoparticles , Neurites , Neuronal Outgrowth , Rats
13.
ACS Chem Neurosci ; 12(6): 959-965, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33635633

ABSTRACT

17ß-Estradiol (E2) confers neuroprotection in preclinical models of spinal cord injury when administered systemically. The goal of this study was to apply E2 locally to the injured spinal cord for a sustained duration using poly(pro-E2) film biomaterials. Following contusive spinal cord injury in adult male mice, poly(pro-E2) films were implanted subdurally and neuroprotection was assessed using immunohistochemistry 7 days after injury and implantation. In these studies, poly(pro-E2) films modestly improved neuroprotection without affecting the inflammatory response when compared to the injured controls. To increase the E2 dose released, bolus-releasing poly(pro-E2) films were fabricated by incorporating unbound E2 into the poly(pro-E2) films. However, compared to the injured controls, bolus-releasing poly(pro-E2) films did not significantly enhance neuroprotection or limit inflammation at either 7 or 21 days post-injury. Future work will focus on developing poly(pro-E2) biomaterials capable of more precisely releasing therapeutic doses of E2.


Subject(s)
Contusions , Neuroprotective Agents , Spinal Cord Injuries , Animals , Estradiol , Male , Mice , Neuroprotective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/drug therapy
14.
J Neurosci Res ; 99(3): 806-826, 2021 03.
Article in English | MEDLINE | ID: mdl-33295039

ABSTRACT

Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), glutamine synthetase (GS), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT-1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT-1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis. No group has performed a comprehensive immunocytochemical evaluation to quantify the percentage of cells labeled by these markers in vitro, nor compared changes in staining between cortex- and spinal cord-derived cells in naïve and stimulated cultures. Here, we quantified the percentage of cells positively stained for these six markers in astrocyte, microglia, and oligodendrocyte cultures isolated from neonatal rat cortices and spinal cords. Additionally, we incubated the astrocytes with transforming growth factor (TGF)-ß1 or TGF-ß3 to determine if the labeling of these markers is altered by these stimuli. We found that only SOX9 in cortical cultures and ALDH1L1 in spinal cord cultures labeled more than 75% of the cells in naïve and stimulated astrocyte cultures and stained less than 5% of the cells in microglia and oligodendrocyte cultures. Furthermore, significantly more cortical than spinal cord astrocytes stained for GFAP, GLAST, and ALDH1L1 in naïve cultures, whereas significantly more spinal cord than cortical astrocytes stained for GLAST and GS in TGF-ß1-treated cultures. These findings are important as variability in marker staining may lead to misinterpretation of the astrocyte response in cocultures, migration assays, or engineered disease models.


Subject(s)
Astrocytes/metabolism , Cerebellar Cortex/metabolism , Spinal Cord/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta3/pharmacology , Animals , Animals, Newborn , Brain/metabolism , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/metabolism , Microglia/metabolism , Neuroglia/metabolism , Oligodendroglia/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , SOX9 Transcription Factor/metabolism
15.
Acta Biomater ; 117: 273-282, 2020 11.
Article in English | MEDLINE | ID: mdl-33035696

ABSTRACT

Following spinal cord injury, astrocytes at the site of injury become reactive and exhibit a neurotoxic (A1) phenotype, which leads to neuronal death. In addition, the glial scar, which is composed of reactive astrocytes, acts as a chemical and physical barrier to subsequent axonal regeneration. Biomaterials, specifically electrospun fibers, induce a migratory phenotype of astrocytes and promote regeneration of axons following acute spinal cord injury in preclinical models. However, no study has examined the potential of electrospun fibers or biomaterials in general to modulate neurotoxic (A1) or neuroprotective (A2) astrocytic phenotypes. To assess astrocyte reactivity in response to aligned poly-l-lactic acid microfibers, naïve spinal cord astrocytes or spinal cord astrocytes primed towards the neurotoxic phenotype (A1) were cultured on fibrous scaffolds. Gene expression analysis of the pan-reactive astrocyte makers (GFAP, Lcn2, SerpinA3), A1 specific markers (H2-D1, SerpinG1), and A2 specific makers (Emp1, S100a10) was done using quantitative polymerase chain reaction (qPCR). Electrospun fibers mildly increased the expression of the pan-reactive and A1-specific markers, showing the ability of fibrous materials to induce a more reactive, A1 phenotype. However, when naïve or activated astrocytes were cultured on fibers in the presence of transforming growth factor ß3 (TGFß3), the expression of A1-specific markers was greatly reduced, which in turn improved neuronal survival in culture.


Subject(s)
Astrocytes , Spinal Cord Injuries , Cells, Cultured , Humans , Polyesters , Transforming Growth Factor beta3
16.
Article in English | MEDLINE | ID: mdl-32923432

ABSTRACT

Researchers are investigating the use of biomaterials with aligned guidance cues, like those provided by aligned electrospun fibers, to facilitate axonal growth across critical-length peripheral nerve defects. To enhance the regenerative outcomes further, these aligned fibers can be designed to provide local, sustained release of therapeutics. The drug fingolimod improved peripheral nerve regeneration in preclinical rodent models by stimulating a pro-regenerative Schwann cell phenotype and axonal growth. However, the systemic delivery of fingolimod for nerve repair can lead to adverse effects, so it is necessary to develop a means of providing sustained delivery of fingolimod local to the injury. Here we created aligned fingolimod-releasing electrospun fibers that provide directional guidance cues in combination with the local, sustained release of fingolimod to enhance neurite outgrowth and stimulate a pro-regenerative Schwann cell phenotype. Electrospun fiber scaffolds were created by blending fingolimod into poly(lactic-co-glycolic acid) (PLGA) at a w/w% (drug/polymer) of 0.0004, 0.02, or 0.04%. We examined the effectiveness of these scaffolds to stimulate neurite extension in vitro by measuring neurite outgrowth from whole and dissociated dorsal root ganglia (DRG). Subsequently, we characterized Schwann cell migration and gene expression in vitro. The results show that drug-loaded PLGA fibers released fingolimod for 28 days, which is the longest reported release of fingolimod from electrospun fibers. Furthermore, the 0.02% fingolimod-loaded fibers enhanced neurite outgrowth from whole and dissociated DRG neurons, increased Schwann cell migration, and reduced the Schwann cell expression of promyelinating factors. The in vitro findings show the potential of the aligned fingolimod-releasing electrospun fibers to enhance peripheral nerve regeneration and serve as a basis for future in vivo studies.

17.
Front Immunol ; 11: 269, 2020.
Article in English | MEDLINE | ID: mdl-32153579

ABSTRACT

Macrophages are a heterogeneous and plastic population of cells whose phenotype changes in response to their environment. Macrophage biologists utilize peritoneal (pMAC) and bone marrow-derived macrophages (BMDM) for in vitro studies. Given that pMACs mature in vivo while BMDM are ex vivo differentiated from stem cells, it is likely that their responses differ under experimental conditions. Surprisingly little is known about how BMDM and pMACs responses compare under the same experimental conditionals. While morphologically similar with respect to forward and side scatter by flow cytometry, reports in the literature suggest that pMACs are more mature than their BMDM counterparts. Given the dearth of information comparing BMDM and pMACs, this work was undertaken to test the hypothesis that elicited pMACs are more responsive to defined conditions, including phagocytosis, respiratory burst, polarization, and cytokine and chemokine release. In all cases, our hypothesis was disproved. At steady state, BMDM are more phagocytic (both rate and extent) than elicited pMACs. In response to polarization, they upregulate chemokine and cytokine gene expression and release more cytokines. The results demonstrate that BMDM are generally more responsive and poised to respond to their environment, while pMAC responses are, in comparison, less pronounced. BMDM responses are a function of intrinsic differences, while pMAC responses reflect their differentiation in the context of the whole animal. This distinction may be important in knockout animals, where the pMAC phenotype may be influenced by the absence of the gene of interest.


Subject(s)
Macrophages, Peritoneal/immunology , Macrophages/immunology , Animals , Cell Differentiation , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Phagocytosis , Transcriptome
18.
Bioengineering (Basel) ; 8(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383759

ABSTRACT

Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.

19.
Curr Opin Biomed Eng ; 14: 67-74, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34296048

ABSTRACT

Astrocytes are dynamic cells residing in the central nervous system exhibiting many diverse functions. Astrocytes quickly change and present unique phenotypes in response to injury or disease. Here, we briefly summarize recent information regarding astrocyte morphology and function and provide brief insight into their phenotypic changes following injury or disease. We also present the utility of in vitro astrocyte cultures and present recent advances in biomaterial development that enable better recapitulation of their in vivo behavior and morphology.

20.
ACS Biomater Sci Eng ; 6(3): 1321-1332, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455379

ABSTRACT

Electrospun poly-l-lactic acid (PLLA) fibers are commonly used for tissue engineering applications because of their uniform morphology, and their efficacy can be further enhanced via surface modification. In this study, we aimed to increase neurite outgrowth along electrospun fibers by coating with silk fibroin (SF), a bioinert protein derived from Bombyx mori cocoon threads, shown to be neurocompatible. Aligned PLLA fibers were electrospun with smooth, pitted, and divoted surface nanotopographies and coated with SF by immersion in coating solution for either 12 or 24 h. Specifically, thin-film coatings of SF were generated by leveraging the controlled self-assembly of SF in aqueous conditions that promote ß-sheet assembly. For both 12- and 24-h coatings, Congo Red staining for ß-sheet structures confirmed the presence of SF coatings on PLLA fibers. Confocal imaging of fluorescein-labeled SF further demonstrated a homogeneous coating formation on PLLA fibers. No change in the water contact angle of the surfaces was observed after coating; however, an increase in the isoelectric point (pI) to values comparable with the theoretical pI of SF was seen. Notably, there was a significant trend of increased dorsal root ganglia (DRG) adhesion on scaffolds coated with SF, as well as greater neurite outgrowth on pitted and divoted fibers that had been coated with SF. Ultimately, this work demonstrated that thin-film SF coatings formed by self-assembly uniformly coat electrospun fibers, providing a new strategy to increase the neuroregenerative capacity of electrospun scaffolds. To our knowledge, this is the first instance of biomedical modification of topologically complex substrates using noncovalent methods.


Subject(s)
Fibroins , Animals , Nerve Regeneration , Neuronal Outgrowth , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...