Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 8(1): 239-251, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29138237

ABSTRACT

Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.


Subject(s)
Gene Expression Regulation, Fungal , Genome, Fungal , Polymorphism, Genetic , Saccharomyces cerevisiae/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Transaminases/genetics , Alcoholic Beverages/analysis , Caffeine/pharmacology , Copper/pharmacology , Culture Media/pharmacology , Ethanol/pharmacology , Fermentation , Humans , Molecular Sequence Annotation , Promoter Regions, Genetic , Quantitative Trait Loci , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Salts/pharmacology , Sirolimus/pharmacology , Sodium-Potassium-Exchanging ATPase/deficiency , Transaminases/deficiency
2.
Genetics ; 199(1): 247-62, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398792

ABSTRACT

Clinically relevant features of monogenic diseases, including severity of symptoms and age of onset, can vary widely in response to environmental differences as well as to the presence of genetic modifiers affecting the trait's penetrance and expressivity. While a better understanding of modifier loci could lead to treatments for Mendelian diseases, the rarity of individuals harboring both a disease-causing allele and a modifying genotype hinders their study in human populations. We examined the genetic architecture of monogenic trait modifiers using a well-characterized yeast model of the human Mendelian disease classic galactosemia. Yeast strains with loss-of-function mutations in the yeast ortholog (GAL7) of the human disease gene (GALT) fail to grow in the presence of even small amounts of galactose due to accumulation of the same toxic intermediates that poison human cells. To isolate and individually genotype large numbers of the very rare (∼0.1%) galactose-tolerant recombinant progeny from a cross between two gal7Δ parents, we developed a new method, called "FACS-QTL." FACS-QTL improves upon the currently used approaches of bulk segregant analysis and extreme QTL mapping by requiring less genome engineering and strain manipulation as well as maintaining individual genotype information. Our results identified multiple distinct solutions by which the monogenic trait could be suppressed, including genetic and nongenetic mechanisms as well as frequent aneuploidy. Taken together, our results imply that the modifiers of monogenic traits are likely to be genetically complex and heterogeneous.


Subject(s)
Aneuploidy , Genes, Modifier , Genetic Variation , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics , Alleles , Chromosome Mapping/methods , Galactose/metabolism , Galectins/deficiency , Galectins/genetics
3.
G3 (Bethesda) ; 3(12): 2163-71, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24122055

ABSTRACT

The budding yeast Saccharomyces cerevisiae is important for human food production and as a model organism for biological research. The genetic diversity contained in the global population of yeast strains represents a valuable resource for a number of fields, including genetics, bioengineering, and studies of evolution and population structure. Here, we apply a multiplexed, reduced genome sequencing strategy (restriction site-associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches. The method permits the sequencing of the same 1% of all genomes, producing a multiple sequence alignment of 116,880 bases across 262 strains. We find diversity among these strains is principally organized by geography, with European, North American, Asian, and African/S. E. Asian populations defining the major axes of genetic variation. At a finer scale, small groups of strains from cacao, olives, and sake are defined by unique variants not present in other strains. One population, containing strains from a variety of fermentations, exhibits high levels of heterozygosity and a mixture of alleles from European and Asian populations, indicating an admixed origin for this group. We propose a model of geographic differentiation followed by human-associated admixture, primarily between European and Asian populations and more recently between European and North American populations. The large collection of genotyped yeast strains characterized here will provide a useful resource for the broad community of yeast researchers.


Subject(s)
Genetic Variation , Genome, Fungal , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Genetics, Population , Heterozygote , Phylogeography
4.
Nat Methods ; 10(7): 671-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666411

ABSTRACT

Tetrad analysis has been a gold-standard genetic technique for several decades. Unfortunately, the need to manually isolate, disrupt and space tetrads has relegated its application to small-scale studies and limited its integration with high-throughput DNA sequencing technologies. We have developed a rapid, high-throughput method, called barcode-enabled sequencing of tetrads (BEST), that uses (i) a meiosis-specific GFP fusion protein to isolate tetrads by FACS and (ii) molecular barcodes that are read during genotyping to identify spores derived from the same tetrad. Maintaining tetrad information allows accurate inference of missing genetic markers and full genotypes of missing (and presumably nonviable) individuals. An individual researcher was able to isolate over 3,000 yeast tetrads in 3 h, an output equivalent to that of almost 1 month of manual dissection. BEST is transferable to other microorganisms for which meiotic mapping is significantly more laborious.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA, Fungal/genetics , Genetic Markers/genetics , High-Throughput Nucleotide Sequencing/methods , Meiosis/genetics , Saccharomyces cerevisiae/genetics
5.
Nat Immunol ; 4(1): 63-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12469119

ABSTRACT

Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor beta (IL-10Rbeta) and an orphan class II receptor chain, designated IL-28Ralpha. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.


Subject(s)
Interleukins/genetics , Interleukins/metabolism , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Amino Acid Sequence , Animals , COS Cells , Cloning, Molecular , Cytokines , Gene Expression , Humans , In Vitro Techniques , Interferons , Molecular Sequence Data , Protein Subunits , RNA/genetics , RNA/metabolism , Receptors, Cytokine/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Virus Diseases/immunology
6.
Neuromuscul Disord ; 12(2): 141-50, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11738356

ABSTRACT

IL-17B is a recently identified homolog of IL-17. Northern analysis revealed that IL-17B mRNA is expressed at very high levels in spinal cord and at much lower and more variable levels in trachea, prostate, lung, small intestine, testes, adrenal, and pancreas. In developing mouse embryos IL-17B expression was first detected at day 11 and appeared to peak at day 15. In situ analysis of mouse spinal cord, dorsal root ganglia, and brain demonstrated that IL-17B mRNA is primarily expressed by the neurons. Immunohistochemical analysis of human spinal cord, dorsal root ganglia, cerebral cortex, cerebellum, and hippocampus demonstrated that IL-17B protein is primarily localized to the neuronal cell bodies and axons. Radiation hybrid mapping localized the IL-17B gene to a region on human chromosome 5q that is associated with a rare autosomal recessive form of Charcot-Marie-Tooth demyelinating disease. However, no changes were found in the coding regions, splice junctions, intron 1, or the 5' and 3' untranslated regions of IL-17B genes of patients affected with this disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Chromosome Mapping , Chromosomes, Human, Pair 5 , Interleukin-17/genetics , Neurons/immunology , Neurons/physiology , Amino Acid Sequence , Animals , Brain/immunology , Cell Line , Charcot-Marie-Tooth Disease/immunology , Cricetinae , Embryonic and Fetal Development , Expressed Sequence Tags , Gene Expression Regulation, Developmental/physiology , Gene Library , Humans , Interleukin-17/physiology , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Organ Specificity , Prostate/metabolism , RNA, Messenger/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Spinal Cord/immunology , Trachea/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...