Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4299, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769086

ABSTRACT

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

2.
Nature ; 627(8005): 772-777, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38538941

ABSTRACT

The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale1-10. However, the operation of the large number of qubits required for advantageous quantum applications11-13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher14-18. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures19-21. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.

3.
Nat Nanotechnol ; 18(2): 131-136, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36635331

ABSTRACT

Once called a 'classically non-describable two-valuedness' by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin-orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time T2,Hahn ≈ 50 µs, fast single-qubit gates with Tπ/2 = 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.

4.
Nano Lett ; 20(11): 7882-7888, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108202

ABSTRACT

The advanced nanoscale integration available in CMOS technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multigate designs. We show that quantum dots formed in a CMOS nanowire device can be measured with a remote single electron transistor (SET) formed in an adjacent nanowire, via floating coupling gates. By biasing the SET nanowire with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling control of all quantum dots in a 2 × 2 array, and charge sensing down to the last electron in each dot. We use effective mass theory to investigate the ideal geometrical parameters in order to achieve interdot tunnel rates required for spin-based quantum computation.

5.
Vet Res ; 51(1): 115, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32928271

ABSTRACT

Coccidiosis, caused by Eimeria species parasites, has long been recognised as an economically significant disease of chickens. As the global chicken population continues to grow, and its contribution to food security intensifies, it is increasingly important to assess the impact of diseases that compromise chicken productivity and welfare. In 1999, Williams published one of the most comprehensive estimates for the cost of coccidiosis in chickens, featuring a compartmentalised model for the costs of prophylaxis, treatment and losses, indicating a total cost in excess of £38 million in the United Kingdom (UK) in 1995. In the 25 years since this analysis the global chicken population has doubled and systems of chicken meat and egg production have advanced through improved nutrition, husbandry and selective breeding of chickens, and wider use of anticoccidial vaccines. Using data from industry representatives including veterinarians, farmers, production and health experts, we have updated the Williams model and estimate that coccidiosis in chickens cost the UK £99.2 million in 2016 (range £73.0-£125.5 million). Applying the model to data from Brazil, Egypt, Guatemala, India, New Zealand, Nigeria and the United States resulted in estimates that, when extrapolated by geographical region, indicate a global cost of ~ £10.4 billion at 2016 prices (£7.7-£13.0 billion), equivalent to £0.16/chicken produced. Understanding the economic costs of livestock diseases can be advantageous, providing baselines to evaluate the impact of different husbandry systems and interventions. The updated cost of coccidiosis in chickens will inform debates on the value of chemoprophylaxis and development of novel anticoccidial vaccines.


Subject(s)
Animal Husbandry/economics , Chickens , Coccidiosis/veterinary , Poultry Diseases/economics , Animals , Coccidiosis/economics
6.
Euro Surveill ; 22(32)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28816650

ABSTRACT

Transmissible spongiform encephalopathies (TSEs) are an important public health concern. Since the emergence of bovine spongiform encephalopathy (BSE) during the 1980s and its link with human Creutzfeldt-Jakob disease, active surveillance has been a key element of the European Union's TSE control strategy. Success of this strategy means that now, very few cases are detected compared with the number of animals tested. Refining surveillance strategies would enable resources to be redirected towards other public health priorities. Cost-effectiveness analysis was performed on several alternative strategies involving reducing the number of animals tested for BSE and scrapie in Great Britain and, for scrapie, varying the ratio of sheep sampled in the abattoir to fallen stock (which died on the farm). The most cost-effective strategy modelled for BSE involved reducing the proportion of fallen stock tested from 100% to 75%, producing a cost saving of ca GBP 700,000 per annum. If 50% of fallen stock were tested, a saving of ca GBP 1.4 million per annum could be achieved. However, these reductions are predicted to increase the period before surveillance can detect an outbreak. For scrapie, reducing the proportion of abattoir samples was the most cost-effective strategy modelled, with limited impact on surveillance effectiveness.


Subject(s)
Cost-Benefit Analysis , Disease Outbreaks/economics , Encephalopathy, Bovine Spongiform/epidemiology , Population Surveillance/methods , Scrapie/epidemiology , Animals , Cattle , Disease Outbreaks/veterinary , Encephalopathy, Bovine Spongiform/economics , Scrapie/economics , United Kingdom/epidemiology
7.
PLoS Negl Trop Dis ; 8(10): e3270, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25340771

ABSTRACT

BACKGROUND: One Health addresses complex challenges to promote the health of all species and the environment by integrating relevant sciences at systems level. Its application to zoonotic diseases is recommended, but few coherent frameworks exist that combine approaches from multiple disciplines. Rabies requires an interdisciplinary approach for effective and efficient management. METHODOLOGY/PRINCIPAL FINDINGS: A framework is proposed to assess the value of rabies interventions holistically. The economic assessment compares additional monetary and non-monetary costs and benefits of an intervention taking into account epidemiological, animal welfare, societal impact and cost data. It is complemented by an ethical assessment. The framework is applied to Colombo City, Sri Lanka, where modified dog rabies intervention measures were implemented in 2007. The two options included for analysis were the control measures in place until 2006 ("baseline scenario") and the new comprehensive intervention measures ("intervention") for a four-year duration. Differences in control cost; monetary human health costs after exposure; Disability-Adjusted Life Years (DALYs) lost due to human rabies deaths and the psychological burden following a bite; negative impact on animal welfare; epidemiological indicators; social acceptance of dogs; and ethical considerations were estimated using a mixed method approach including primary and secondary data. Over the four years analysed, the intervention cost US $1.03 million more than the baseline scenario in 2011 prices (adjusted for inflation) and caused a reduction in dog rabies cases; 738 DALYs averted; an increase in acceptability among non-dog owners; a perception of positive changes in society including a decrease in the number of roaming dogs; and a net reduction in the impact on animal welfare from intermediate-high to low-intermediate. CONCLUSIONS: The findings illustrate the multiple outcomes relevant to stakeholders and allow greater understanding of the value of the implemented rabies control measures, thereby providing a solid foundation for informed decision-making and sustainable control.


Subject(s)
Dog Diseases/prevention & control , Rabies/prevention & control , Animal Welfare , Animals , Bites and Stings/economics , Data Collection , Decision Making , Dogs , Ethics, Medical , Health Care Costs , Humans , National Health Programs , Quality-Adjusted Life Years , Rabies/veterinary , Sri Lanka
SELECTION OF CITATIONS
SEARCH DETAIL
...