Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(4): 043402, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794813

ABSTRACT

A quantity known as the contact is a fundamental thermodynamic property of quantum many-body systems with short-range interactions. Determination of the temperature dependence of the contact for the unitary Fermi gas of infinite scattering length has been a major challenge, with different calculations yielding qualitatively different results. Here we use finite-temperature auxiliary-field quantum Monte Carlo (AFMC) methods on the lattice within the canonical ensemble to calculate the temperature dependence of the contact for the homogeneous spin-balanced unitary Fermi gas. We extrapolate to the continuum limit for 40, 66, and 114 particles, eliminating systematic errors due to finite-range effects. We observe a dramatic decrease in the contact as the superfluid critical temperature is approached from below, followed by a gradual weak decrease as the temperature increases in the normal phase. Our theoretical results are in excellent agreement with the most recent precision ultracold atomic gas experiments. We also present results for the energy as a function of temperature in the continuum limit.

2.
Phys Rev Lett ; 124(9): 090604, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202890

ABSTRACT

In the two-component Fermi gas with a contact interaction, a pseudogap regime can exist at temperatures between the superfluid critical temperature T_{c} and a temperature T^{*}>T_{c}. This regime is characterized by pairing correlations without superfluidity. However, in the unitary limit of infinite scattering length, the existence of this regime is still debated. To help address this, we have applied finite-temperature auxiliary-field quantum Monte Carlo (AFMC) methods to study the thermodynamics of the superfluid phase transition and signatures of the pseudogap in the spin-balanced homogeneous unitary Fermi gas. We present results at finite filling factor ν≃0.06 for the condensate fraction, an energy-staggering pairing gap, the spin susceptibility, and the heat capacity, and compare them to experimental data when available. In contrast to previous AFMC simulations, our model space consists of the complete first Brillouin zone of the lattice, and our calculations are performed in the canonical ensemble of fixed particle number. The canonical ensemble AFMC framework enables the calculation of a model-independent gap, providing direct information on pairing correlations without the need for numerical analytic continuation. We use finite-size scaling to estimate T_{c} at the corresponding filling factor. We find that the energy-staggering pairing gap vanishes above T_{c}, showing no pseudogap effects, and that the spin susceptibility shows a substantially reduced signature of a spin gap compared to previously reported AFMC simulations.

3.
Phys Rev Lett ; 113(26): 262503, 2014 Dec 31.
Article in English | MEDLINE | ID: mdl-25615315

ABSTRACT

Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...